Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 120: 104058, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657430

RESUMO

Recently, l-amino acid oxidases (LAAOs) have been identified in several fish species as first-line defense molecules against bacterial infection. Here, we report the cloning and characterization of a fish LAAO gene, EcLAAO2, from orange-spotted grouper (Epinephelus coioides). The full-length cDNA is 3030 bp, with an ORF encoding a protein of 511 amino acids. EcLAAO2 is mainly expressed in the fin, gill, and intestine. Its expression is upregulated in several immune organs after challenge with lipopolysaccharide (LPS) and poly (I:C). The recombinant EcLAAO2 protein (rEcLAAO2), expressed and purified from a baculovirus expression system, was determined to be a glycosylated dimer. According to a hydrogen peroxide-production assay, the recombinant protein was identified as having LAAO enzyme activity with substrate preference for L-Phe and L-Trp, but not L-Lys as other known fish LAAOs. rEcLAAO2 could effectively inhibit the growth of Vibrio parahaemolyticus, Staphylococcus aureus, and Bacillus subtilis while exhibiting less effective inhibition of the growth of Escherichia coli. Finally, protein models based on sequence homology were constructed to predict the three-dimensional structure of EcLAAO2 as well as to explain the difference in substrate specificity between EcLAAO2 and other reported fish LAAOs. In conclusion, this study identifies EcLAAO2 as a novel fish LAAO with a substrate preference distinct from other known fish LAAOs and reveals that it may function against invading pathogens.


Assuntos
Bass/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , L-Aminoácido Oxidase/metabolismo , Sequência de Aminoácidos , Animais , Bass/genética , Bass/microbiologia , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/isolamento & purificação , L-Aminoácido Oxidase/genética , L-Aminoácido Oxidase/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Células Sf9 , Spodoptera , Especificidade por Substrato/imunologia , Vibrio parahaemolyticus/imunologia
2.
Nanomaterials (Basel) ; 10(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007846

RESUMO

Without using templates, seeds and surfactants, this study successfully prepared multi-oxide-layer coated Ag nanowires that enable tunable surface plasmon resonance without size or shape changes. A spontaneously grown ultra-thin titania layer onto the Ag nanowire surface causes a shift in surface plasmon resonance towards low energy (high wavelength) and also acts as a preferential site for the subsequent deposition of various oxides, e.g., TiO2 and CeO2. The difference in refractive indices results in further plasmonic resonance shifts. This verifies that the surface plasma resonance wavelength of one-dimensional nanostructures can be adjusted using refractive indices and shell oxide thickness design.

3.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132237

RESUMO

For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the ΔA56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter's G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.


Assuntos
Fusão de Membrana , Mutação , Vaccinia virus/genética , Vaccinia virus/isolamento & purificação , Proteínas Virais/genética , Fusão Celular , Membrana Celular , Evolução Molecular , Regulação Viral da Expressão Gênica , Genes Virais/genética , Genoma Viral , Células HeLa , Humanos , Proteínas Recombinantes , Vaccinia virus/crescimento & desenvolvimento , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/isolamento & purificação , Proteínas Virais/isolamento & purificação , Internalização do Vírus
4.
Dev Comp Immunol ; 97: 1-10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30904428

RESUMO

In this study, we describe 19 different CC chemokine genes from the orange-spotted grouper, Epinephelus coioides, identified by the analysis of the spleen transcriptome. Multiple sequence alignment of the 19 CC chemokines showed that although two genes, EcSCYA115 and EcSCYA117, shared 80% amino acid similarity (72% identity), the majority exhibited low similarity to each other. Phylogenetic analysis divided the 19 CC chemokines into six major groups. Tissue distribution analysis by RT-PCR showed that most of these chemokines were ubiquitously expressed in the 9 examined tissues, whereas some exhibited tissue-preferential expression patterns. For example, EcSCYA103 was preferentially expressed in fin and gill; EcSCYA109 in head kidney and spleen; EcSCYA114 in fin, gill, and liver; and EcSCYA119 in fin and stomach. Quantitative RT-PCR showed that after challenge with grouper iridovirus (GIV), four of the 19 CC chemokine genes, EcSYCA102, EcSYCA103, EcSYCA116, and EcSYCA118, were highly induced in the spleen. The expression of these four genes could also be upregulated by LPS and poly (I:C) challenges, suggesting that these four genes might be involved in immune response against invading pathogens.


Assuntos
Bass/genética , Quimiocinas CC/genética , Proteínas de Peixes/genética , Família Multigênica , Baço/metabolismo , Transcriptoma/genética , Sequência de Aminoácidos , Nadadeiras de Animais/metabolismo , Animais , Bass/virologia , Quimiocinas CC/classificação , Perfilação da Expressão Gênica/métodos , Brânquias/metabolismo , Interações Hospedeiro-Patógeno , Iridovirus/fisiologia , Especificidade de Órgãos/genética , Homologia de Sequência de Aminoácidos
5.
Nanoscale Res Lett ; 10(1): 438, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26563266

RESUMO

Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

6.
Chem Commun (Camb) ; 51(94): 16825-8, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26434542

RESUMO

Ag nanowires with a spontaneous ultra-thin TiO2 shell (∼0.5 nm) can be grown on TiO2 substrate. STEM/EELS results demonstrate that this oxygen-deficient TiO2 layer is formed through the oxidation of Ti which is released from the substrate and segregated to the nanowire surface simultaneously with crystal growth of the nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...