Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 44(5): 1087-1103, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319576

RESUMO

PURPOSE: Metastasis of lung adenocarcinoma (LADC) is a crucial factor determining patient survival. Repurposing of the antipsychotic agent penfluridol has been found to be effective in the inhibition of growth of various cancers. As yet, however, the anti-metastatic effect of penfluridol on LADC has rarely been investigated. Herein, we addressed the therapeutic potential of penfluridol on the invasion/metastasis of LADC cells harboring different epidermal growth factor receptor (EGFR) mutation statuses. METHODS: MTS viability, transwell migration and invasion, and tumor endothelium adhesion assays were employed to determine cytotoxic and anti-metastatic effects of penfluridol on LADC cells. Protease array, Western blot, immunohistochemistry (IHC), immunofluorescence (IF) staining, and expression knockdown by shRNA or exogenous overexpression by DNA plasmid transfection were performed to explore the underlying mechanisms, both in vitro and in vivo. RESULTS: We found that nontoxic concentrations of penfluridol reduced the migration, invasion and adhesion of LADC cells. Protease array screening identified matrix metalloproteinase-12 (MMP-12) as a potential target of penfluridol to modulate the motility and adhesion of LADC cells. In addition, we found that MMP-12 exhibited the most significantly adverse prognostic effect in LADC among 39 cancer types. Mechanistic investigations revealed that penfluridol inhibited the urokinase plasminogen activator (uPA)/uPA receptor/transforming growth factor-ß/Akt axis to downregulate MMP-12 expression and, subsequently, reverse MMP-12-induced epithelial-mesenchymal transition (EMT). Subsequent analysis of clinical LADC samples revealed a positive correlation between MMP12 and mesenchymal-related gene expression levels. A lower survival rate was found in LADC patients with a SNAl1high/MMP12high profile compared to those with a SNAl1low/MMP12low profile. CONCLUSIONS: Our results indicate that MMP-12 may serve as a useful biomarker for predicting LADC progression and as a promising penfluridol target for treating metastatic LADC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Penfluridol/farmacologia , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Reposicionamento de Medicamentos/métodos , Transição Epitelial-Mesenquimal/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Neuropsychiatr Dis Treat ; 15: 2927-2941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31686827

RESUMO

BACKGROUND: Ischemic stroke triggers inflammatory responses and oxidative stress in the brain, and microglia polarization affects the degree of neuroinflammation. It has been reported that the inhibition of soluble epoxide hydrolase (sEH) activity protects brain tissue. However, the anti-inflammatory and antioxidative effects of sEH inhibition in the ischemic brain are not fully understood. This study aimed to investigate the effects of a selective sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), after ischemic stroke. METHODS: Adult male rats with middle cerebral artery occlusion (MCAO) were administered with AUDA or a vehicle. Behavioral outcome, infarct volume, microglia polarization, and gene expression were assessed. RESULTS: Rats treated with AUDA showed better behavioral outcomes and smaller infarct volumes after MCAO. After AUDA treatment, a reduction of M1 microglia and an increase of M2 microglia occurred at the ischemic cortex of rats. Additionally, there was an increase in the mRNA expressions of antioxidant enzymes and anti-inflammatory interleukin-10, and pro-inflammatory mediators were decreased after AUDA administration. Heme oxygenase-1 was mainly expressed by neurons, and AUDA was found to improve the survival of neurons. CONCLUSION: The results of this study provided novel and significant insights into how AUDA can improve outcomes and modulate inflammation and oxidative stress after ischemic stroke.

3.
In Vivo ; 33(4): 1175-1181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280207

RESUMO

BACKGROUND/AIM: Middle cerebral artery occlusion (MCAO) in rodents is an essential animal model for research focusing on ischemic stroke. To date, several kinds of surgical methods for MCAO have been developed and the craniotomy method has the advantage of direct visualization of the middle cerebral artery (MCA). MCAO at a more proximal site produces better surgical results, but it is a more invasive technique. The aim of this study was to evolve the surgical technique for simulating ischemic cerebral cortex injury in rats. MATERIALS AND METHODS: To approach proximal MCA with a less invasive procedure, a modified surgical technique for MCAO in rats was developed. Besides, rats receiving the modified and conventional method were compared with regard to infarct volume and by behavioral tests. RESULTS: Following craniotomy, we proposed that the inferior edge of the craniotomy should be enlarged with fine forceps. This modified surgical method induces larger infarct volume, significant behavioral impairment and can induce ischemic stroke. Additionally, it does not significantly increase the operation time, and has produced no obvious complications. CONCLUSION: This modified surgical technique may serve as a practical method for performing MCAO.


Assuntos
Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Procedimentos Neurocirúrgicos , Animais , Biópsia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/mortalidade , Infarto da Artéria Cerebral Média/complicações , Mortalidade , Procedimentos Neurocirúrgicos/métodos , Ratos
4.
Neuroreport ; 30(8): 567-572, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30950936

RESUMO

It is generally understood that continuing neuroinflammation after ischemic stroke can exacerbate the brain damage. During the inflammatory hematogenous recruitment process, the monocytes and macrophages are activated into proinflammatory M1 and anti-inflammatory M2 cell types. Inhibition of soluble epoxide hydrolase (sEH) activity has been reported to regulate monocytes/macrophages, and attenuates neuroinflammation. This study aimed to evaluate whether a selective sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), can regulate monocyte/macrophage polarization and improve motor function in the rats with ischemic stroke induced by middle cerebral artery occlusion. We measured the infarct volume with 2,3,5-triphenyltetrazolium chloride staining and used the rotarod test to assess motor performance in rats. The monocyte/macrophage activation and mRNA expression of proinflammatory mediators were measured by flow cytometry and reverse-transcription quantitative PCR, respectively. Our results showed better neurological function and less infarct volume in the rats treated with AUDA. Compared with the vehicle group, the AUDA-treated group showed a reduction in M1 monocyte/macrophage activation and proinflammatory mRNA expressions in the infarct cortex of rats. Our data suggest that the sEH inhibition may regulate monocyte/macrophage polarization and improve neurological outcome after ischemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encefalite/fisiopatologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/fisiologia , Macrófagos/fisiologia , Monócitos/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adamantano/administração & dosagem , Adamantano/análogos & derivados , Animais , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Láuricos/administração & dosagem , Macrófagos/efeitos dos fármacos , Masculino , Monócitos/efeitos dos fármacos , Ratos Endogâmicos WKY , Teste de Desempenho do Rota-Rod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...