Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1307: 342608, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719411

RESUMO

BACKGROUND: Copper foil, a thin layer of high-purity metallic copper, having excellent conductivity, ductility, and corrosion resistance, is extensively applied in various electronic applications. Thiolated (SH-containing) chemical additives (i.e., accelerator and inhibitor) in copper electroplating solution are known to be critical for optimizing the copper foil manufacturing processes. Due to the high ionic strength and acidity of copper electroplating solution, proper and accurate characterization of the thiolated chemical additives is a critical concern. RESULTS: In this study, a facile, accurate approach is developed for quantitative characterization of thiolated additives in the copper electroplating solution. Firstly, gold nanoparticles (AuNPs) were employed as an adsorbent for separating the thiolated chemical additives, namely, poly(ethylene glycol) methyl ether thiol (PEG-SH) as inhibitor, and 3-mercaptopropionic acid (MPA) as accelerator from other interfering chemicals present in the copper electroplating solution. Subsequently, quantitative analysis of the AuNPs in the form of thin particle film was performed using attenuated total reflection-Fourier transform infrared spectroscopy. Electrospray-differential mobility analyzer was employed orthogonally for the quantitative analysis of the amount of thiolated additives adsorbed on AuNP. Interestingly, the results indicated that the detection concentration ranges of 5 µM-100 µM for PEG-SH and 10 µM-200 µM for MPA, respectively. SIGNIFICANCE: Overall, this work demonstrates a successful separation and analysis methodology for the thiolated chemical additives in copper electroplating solution which enables the precise control over the copper foil manufacturing process.

2.
Small Methods ; 8(5): e2301435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161255

RESUMO

A new and efficient technique is developed by combining the hyphenated microfluidic- and aerosol-based synthesis with the coupled differential mobility analysis for the effective and continuous synthesis and simultaneous analysis of metal-organic frameworks (MOFs)-derived hybrid nanostructured products. HKUST-1, a copper-based MOF, is chosen as the representative to fabricate Cu-based hybrid catalysts for reverse water-gas shift (RWGS) reaction, an effective route for CO2 utilization. The effect of precursor concentration and carrier selection on the properties of the resulting products, including mobility size distribution, crystallization degree, surface area, and metal dispersion are investigated, as well as the correlation between the material properties of the synthesized catalysts and their catalytic performance in RWGS reaction in terms of conversion ratio/rate, selectivity, and operational stability. The results indicate that the continuous microfluidic droplet system can successfully synthesize MOF colloids, followed by the continuous production of MOF-derived hybrid materials through the tandem aerosol spray-drying-reaction system. High catalytic activity and low initiate temperature toward RWGS (turnover frequency = 0.0074 s-1; 450 °C) are achievable. The work facilitates the production and the designed concept of relevant MOF-derived hybrid nanostructured catalysts in the continuous synthesis system and the enhancement of applications in CO2 capture and utilization.

3.
Langmuir ; 39(41): 14782-14790, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788018

RESUMO

The urgent need to mitigate greenhouse gas emissions and combat climate change has driven research in carbon capture and utilization (CCU) technologies. Among these, calcium looping (CaL) has emerged as a prominent candidate for CO2 capture. This study aimed to explore the novel integration of CaL with methane bireforming (BRM) using CaO-Ni/CeO2 as dual-function material (DFM) and investigated the challenges and opportunities associated with the process. Implementing a calcium looping-bireforming (CaL-BRM) process revealed distinct differences compared to methane dry reforming (DRM). Notably, methane conversion occurred at higher temperatures, likely due to competition with the formation of Ca(OH)2. Meanwhile, the conversion of CO2 was delayed, possibly because hydroxide species on the CaO surfaces hindered the availability of CO2 for methane reforming. To address these challenges, Ni/CeO2 and CaO-Ni/CeO2 catalysts were employed in conventional catalytic gas-phase BRM and methane steam reforming (SRM) reactions. The results demonstrated that the presence of CaO significantly influenced BRM efficiency due to the Ca(OH)2 formation, as was evident by the results of the characterization on the postreaction catalysts and the parallel study of SRM. This study contributes valuable insights into the feasibility and potential of CaL-BRM, advancing the development of sustainable CCU technologies.

4.
Anal Chem ; 95(9): 4513-4520, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36787537

RESUMO

A hyphenated electrospray-differential mobility analysis (ES-DMA) was developed for providing a high-resolution, real-time quantitative analysis on the metal-organic framework (MOF) colloids produced via the concept of microfluidic flow chemistry. Zeolitic imidazolate framework-8 was chosen as the representative MOF of the study. The results show that the physical size and number concentration of the MOF colloid were successfully characterized by the hyphenated ES-DMA during the microdroplet synthetic process, with 3 nm and 4% of measurement uncertainties, respectively. The effects of the synthetic temperature and the molar ratio of the organic linker to metal precursor were investigated, providing an opportunity for accurate control on the particle size (100-200 nm) of the microdroplet-synthesized MOF. The work demonstrates a powerful approach for the real-time quality assurance and material optimization in microdroplet synthesis of colloidal MOFs.

5.
Langmuir ; 38(30): 9037-9042, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35850512

RESUMO

Interest in multifunctional nanoparticles is currently rising due to the increasing demand in green energy and environmental applications. The aerosol-based synthetic route emerges as a promising method for enabling the fabrication of multifunctional nanoparticles in a continuous and scalable manner. Meanwhile, interfacial catalysis is receiving great attention to enhance the performance of chemical reactions. In this regard, the utilization of aerosol nanoparticles is highly beneficial to the catalysis field by the creation of strong metal-support-promoter interactions for promoting interfacial catalysis. In this Perspective, aerosol-based synthesis of hybrid nanoparticles is briefly discussed. In addition, the interfacial catalysis of CO oxidation, methane combustion, CO2 hydrogenation, and dry reforming of methane are discussed to provide fundamental insights and concepts for the rational design of nanocatalysts with efficient interfaces.

6.
Langmuir ; 38(14): 4415-4424, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35357172

RESUMO

A quantitative study of the synthesis of metal-organic framework (MOF) colloids via a solvothermal growth process was demonstrated using electrospray-differential mobility analysis (ES-DMA), a gas-phase electrophoresis approach. HKUST-1, a copper-based MOF (Cu-MOF), was selected as the representative MOF of the study. The effects of the synthetic parameters, including ligand concentration (CBTC), synthetic temperature (Ts), and synthetic time (ts) versus material properties of the Cu-MOF, were successfully characterized based on the mobility size distributions measured by ES-DMA. The results show that the mobility size of Cu-MOF was proportional to Ts, ts, and CBTC during the solvothermal growth. X-ray diffraction and Brunauer-Emmett-Teller analyses were employed complementarily to the ES-DMA, confirming that the increase in mobility size of Cu-MOF was correlated to the increase in crystallinity (i.e., larger specific surface area and crystallite size). The results of CO2 pulse adsorption show that the synthesized Cu-MOF possessed a good CO2 adsorption ability under 1 atm, 35 °C, and the cumulative amount of CO2 uptake was proportional to the measured mobility size of Cu-MOF. The work provides a proof of concept for the controlled synthesis of MOF colloids with the support of gas-phase electrophoretic analysis, and the quantitative methodology is useful for the development of MOF-based applications in CO2 capture and utilization.

7.
Langmuir ; 36(48): 14782-14792, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33236916

RESUMO

The assembly-disassembly of hyaluronic acid (HA) with a bovine serum albumin-conjugated gold nanoparticle (BSA-AuNP) was demonstrated using a gas-phase electrophoresis approach, electrospray-differential mobility analysis (ES-DMA). Physical sizes, number and mass concentrations, and degrees of aggregation of HA, BSA, and AuNP were successfully quantified using ES-DMA hyphenated with inductively coupled plasma mass spectrometry. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed complementarily for an orthogonal characterization of the assembly of HA with BSA-AuNP and the subsequent HA detachment. The results show that the surface packing density of HA on BSA-AuNP was proportional to the concentration of HA (CHA) when CHA ≤ 5 × 10-3 µmol/L, and the equilibrium binding constant of HA on BSA-AuNP was identified as ≈ 4 × 105 L/mol at pH 3. The pH-sensitive and enzyme-induced detachments of HA from BSA-AuNP were both successfully characterized using ES-DMA and ATR-FTIR. In the absence of enzymatic catalysis, the rate constant of HA detachment (k) was shown to increase by at least 3.7 times on adjusting the environmental acidity from pH 3 to pH 7. A significant enzyme-induced HA detachment was identified at pH 7, showing a remarkable increase of k by at least two times in the presence of an enzyme. This work provides a proof of concept for assembly of HA-based hybrid colloidal nanomaterials through the tuning of surface chemistry in the aqueous phase with the ability of in situ quantitative characterization, which has shown promise for the development of a variety of HA-derivative biomedical applications (e.g., drug delivery).

8.
ACS Appl Mater Interfaces ; 12(13): 15183-15193, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167283

RESUMO

Syngas, consisting of equimolar CO and H2, is an important feedstock for large-scale production of a wide range of commodity chemicals including aldehyde, methanol, ammonia, and other oxygenated chemicals. Dry reforming of methane (DRM), proceeding by reacting greenhouse gases, CO2 and CH4, at high temperatures in the presence of a metal catalyst, is considered one of the most environmentally friendly routes for syngas production. Nevertheless, nonprecious metal-based catalysts, which can operate at relatively low temperatures for high product yields and selectivities, are required to drive the DRM process for industrial applications effectively. Here, we developed NiCo@C nanocomposites from a corresponding NiCo-based bimetallic metal-organic framework (MOF) to serve as high-performance catalysts for the DRM process, achieving high turnover frequencies (TOF) at low temperatures (>5.7 s-1 at 600 °C) and high product selectivities (H2/CO = 0.9 at 700 °C). The incorporation of Co in Ni catalysts improves the operation stability and light-off stability. The present development for MOF-derived nanocomposites opens a new horizon for design of DRM catalysts.

9.
Langmuir ; 35(44): 14203-14212, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31596591

RESUMO

A facile aerosol-based synthetic approach is demonstrated for the fabrication of silver-manganese oxide (Ag-MnOx) and cetyltrimethylammonium bromide (CTAB)-templated silver-manganese oxide (c-Ag-MnOx) hybrid nanostructures as the positive electrode materials of supercapacitors. Through gas-phase evaporation-induced self-assembly, silver nanoparticles are homogeneously decorated in the hybrid nanostructure to create a conductive path at the interface of the cluster of MnOx crystallites. The utilization of the capacitance of MnOx increases by the addition of Ag nanoparticles (>2 times for Ag-MnOx and ∼1.7 times for c-Ag-MnOx). An optimal specific capacitance is achieved when the concentration of the silver precursor (CAg) is 0.5 wt %, 118 F g-1 for Ag-MnOx, and 154 F g-1 for c-Ag-MnOx at a specific current of 1 A g-1. The enhanced supercapacitive performance by the addition of CTAB at low CAg is attributed to the increased surface area (>19.4%) for electrochemical reactions. The prototype method with mechanistic understanding demonstrated in this study shows promise for the fabrication of a variety of MnOx-based hybrid nanostructures for supercapacitor applications.

10.
Anal Bioanal Chem ; 411(7): 1443-1451, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30659324

RESUMO

We report a facile, high-resolution approach to quantitatively characterize hyaluronic acid (HA) and study its crosslinking reaction using electrospray-differential mobility analysis (ES-DMA). Mobility size distributions, number concentrations, molecular mass distributions, and polydispersity index of HAs were obtained successfully via a rapid analysis by ES-DMA (< 30 min). The limit of detection, the limit of quantification, and the precision of the mobility size measurement achieve 2.5 nm, 4.0 nm, and 0.3 nm, respectively. Size exclusion chromatography (SEC) was employed as an orthogonal approach, showing that the averaged molecular mass and polydispersity index of HA measured by ES-DMA were close to the results of SEC on a semi-quantitative basis. The 1,4-butanediol diglycidyl ether (BDDE)-induced crosslinking of HA was also able to be successfully characterized through a time-dependent study using ES-DMA, which has shown the promise of direct analysis of solution-based reactions. Both the extent and the rate of HA crosslinking (induced by BDDE) were proportional to reaction temperature and concentration ratio of HA to BDDE. The activation energy of the reaction-limited BDDE-induced crosslinking of HA was found to be ≈ 21 kJ/mol. The prototype study demonstrates ES-DMA as a new method for a rapid quantitative characterization of HA and its derivative product and providing a capability of real-time monitoring of the HA crosslinking during formulation process. Graphical abstract.

11.
Langmuir ; 34(17): 5030-5039, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29606007

RESUMO

A gas-phase-controlled synthetic approach is demonstrated to fabricate Ag-ZnO hybrid nanostructure as a high-performance catalyst for photodegradation of water pollutants. The degradation of rhodamine B (RhB) was used as representative, which were tested and evaluated with respect to the environmental pH and the presence of dodecyl sulfate corona on the surface of the catalyst. The results show that a raspberry-structure Ag-ZnO hybrid nanoparticle cluster was successfully synthesized via gas-phase evaporation-induced self-assembly. The photodegradation activity increased significantly (20×) by using the Ag-ZnO hybrid nanoparticle cluster as a catalyst. A surge of catalytic turnover frequency of ZnO nanoparticle cluster (>20×) was observed through the hybridization with silver nanoparticles. The dodecyl sulfate corona increased the photocatalytic activity of the Ag-ZnO hybrid nanoparticle cluster, especially at the acidic and neutral pH environments (maximum 6×), and the enhancement in catalytic activity was attributed to the improved colloidal stability of ZnO-based nanoparticle cluster under the interaction with RhB. Our work provides a generic route of facile synthesis of the Ag-ZnO hybrid nanoparticle cluster with a mechanistic understanding of the interface reaction for enhancing photocatalysis toward the degradation of water pollutants.

12.
ACS Appl Mater Interfaces ; 10(11): 9332-9341, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29493209

RESUMO

We report an aerosol-based approach to study the thermal stability of metal-organic frameworks (MOFs) for gas-phase synthesis of MOF-based hybrid nanostructures used for highly active catalysis. Temperature-programmed electrospray-differential mobility analysis (TP-ES-DMA) provides the characterization of temperature-dependent morphological change directly in the gas phase, and the results are shown to be highly correlated with the structural thermal stability of MOFs determined by the traditional measurements of porosity and crystallinity. The results show that MOFs underwent thermal decomposition via simultaneous disassembly and deaggregation. Trimeric Cr-based MIL-88B-NH2 exhibited a higher temperature of decomposition ( Td), 350 °C, than trimeric Fe-based MIL-88B-NH2, 250 °C. For UiO-66, a significant decrease of Td by ≈100 °C was observed by using amine-functionalized ligands in the MOF structure. Copper oxide nanocrystals were successfully encapsulated in the UiO-66 crystal (Cu xO@UiO-66) by using a gas-phase evaporation-induced self-assembly approach followed by a suitable thermal treatment below Td (i.e., determined by TP-ES-DMA). Cu xO@UiO-66 demonstrated a very high catalytic activity and stability to CO oxidation, showing at least a 3-time increase in CO conversion compared to the bare CuO nanoparticle samples. The study demonstrates a prototype methodology (1) to determine structural thermal stability of MOFs using a gas-phase electrophoretic method (TP-ES-DMA) and (2) to gas-phase synthesize CuO nanocrystals encapsulated in MOFs.

13.
Langmuir ; 34(1): 154-163, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29141149

RESUMO

Cisplatin-complexed gold nanoparticles (PtII-AuNP) provide a promising strategy for chemo-radiation-based anticancer drugs. Effective design of such platforms necessitates reliable assessment of surface engineering on a quantitative basis and its influence on drug payload, stability, and release. In this paper, poly(ethylene glycol) (PEG)-stabilized PtII-AuNP was synthesized as a model antitumor drug platform, where PtII is attached via a carboxyl-terminated dendron ligand. Surface modification by PEG and its influence on drug loading, colloidal stability, and drug release were assessed. Complexation with PtII significantly degrades colloidal stability of the conjugate; however, PEGylation provides substantial improvement of stability in conjunction with an insignificant trade-off in drug loading capacity compared with the non-PEGylated control (<20% decrease in loading capacity). In this context, the effect of varying PEG concentration and molar mass was investigated. On a quantitative basis, the extent of PEGylation was characterized and its influence on dispersion stability and drug load was examined using electrospray differential mobility analysis (ES-DMA) hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) and compared with attenuated total reflectance-FTIR. Using ES-DMA-ICP-MS, AuNP conjugates were size-classified based on their electrical mobility, while PtII loading was simultaneously quantified by determination of Pt mass. Colloidal stability was quantitatively evaluated in biologically relevant media. Finally, the pH-dependent PtII release performance was evaluated. We observed 9% and 16% PtII release at drug loadings of 0.5 and 1.9 PtII/nm2, respectively. The relative molar mass of PEG had no significant influence on PtII uptake or release performance, while PEGylation substantially improved the colloidal stability of the conjugate. Notably, the PtII release over 10 days (examined at 0.5 PtII/nm2 drug loading) remained constant for non-PEGylated, 1K-PEGylated, and 5K-PEGylated conjugates.


Assuntos
Antineoplásicos/química , Cisplatino/química , Coloides/química , Ouro/química , Nanopartículas Metálicas/química , Dendrímeros/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Peso Molecular , Tamanho da Partícula , Polietilenoglicóis/química
14.
Anal Chem ; 89(22): 12217-12222, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29086566

RESUMO

We demonstrate a new, facile gas-phase electrostatic approach to successfully quantify equivalent surface area of graphene oxide (GO) colloid on a number basis. Mobility diameter (dp,m)-based distribution and the corresponding equivalent surface area (SA) of GO colloids (i.e., with different lateral aspect ratios) were able to be identified by electrospray-differential mobility analysis (ES-DMA) coupled to a condensation particle counter (CPC) and an aerosol surface area analyzer (ASAA). A correlation of SA ∝ dp,m2.0 was established using the ES-DMA-CPC/ASAA, which is consistent with the observation by the 2-dimensional image analysis of size-selected GOs. An ultrafast surface area measurement of GO colloid was achieved via a direct coupling of ES with a combination of ASAA and CPC (i.e., measurement time was 2 min per sample; without size classification). The measured equivalent surface area of GO was ∼202 ± 7 m2 g-1, which is comparable to Brunauer-Emmett-Teller (BET) surface area, ∼240 ± 59 m2 g-1. The gas-phase electrostatic approach proposed in this study has the superior advantages of being fast, requiring no elaborate drying process, and requiring only a very small amount of sample (i.e., <0.01 mg). To the best of our knowledge, this is the first study of using an aerosol-based electrostatic coupling technique to obtain the equivalent surface area of graphene oxide on a number basis with a high precision of measurement.

15.
Anal Bioanal Chem ; 409(25): 5933-5941, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815281

RESUMO

In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.

16.
Langmuir ; 33(11): 2817-2828, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28233496

RESUMO

We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.

17.
Nanotechnology ; 28(3): 035602, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27928994

RESUMO

We report a systematic study of the controlled gas-phase synthesis of silver-silica hybrid nanostructures (Ag-SiO2 NP) using the concept of evaporation-induced self-assembly. The approach includes the use of a direct gas-phase electrophoresis for size classification and in situ characterization of mobility size. Transmission electron microscopy and ultraviolet-visible light spectroscopy were employed complementarily to determine the morphology and surface plasmon resonance of Ag-SiO2 NP. Results show that two types of Ag-SiO2 NPs were successfully synthesized: (1) AgNPs decorated on a SiO2-NP (Ag-T-SiO2 NP), and (2) AgNPs doped in a cluster of SiO2-NPs (Ag-C-SiO2 NP). The physical size, morphology, and compositions of Ag-SiO2 NPs were tunable through the adjustments of precursor concentrations and the selected mobility sizes. The results also show that SPR performance, colloidal stability, and dispersibility of AgNPs enhanced significantly in an aqueous environment after the hybridization with SiO2-NP (especially for Ag-C-SiO2 NP). The results and corresponding methodology summarized here provide the proof of concept to fabricate high-purity AgNP-based hybrid nanostructures through gas-phase evaporation-induced self-assembly for future biomedical applications (e.g., hyperthermal therapy, targeted drug delivery, and antibacterial applications).

18.
J Colloid Interface Sci ; 490: 802-811, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27997848

RESUMO

We report a systematic study of the controlled synthesis of new hybrid spherical TiO2 nanoparticle cluster (TiO2-NPC) homogeneously decorated with noble metal nanoparticles (NPs) by gas-phase evaporation-induced self-assembly. Silver NP (AgNP) was used as the representative noble metal NP. The degradation of methyl blue (MB) in the aqueous solution was chosen as the representative system for the study of photocatalysis, which were tested and evaluated with respect to irradiation conditions and the presence of bovine serum albumin (BSA). The results show that particle size and chemical composition of the hybrid nanostructure were tunable by choosing the suitable concentration of precursors. The photocatalytic activity of AgNP-decorated TiO2-NPC was strongly affected by the light irradiation and the ligand-nanoparticle interfacial interaction. The presence of BSA influenced molecular conjugation to the surface of the hybrid nanostructure. Under conditions of simultaneous competitive adsorption of MB and BSA, the combination of AgNPs improved the photocatalytic activity of the TiO2-NPC-based catalysts. Our work describes a prototype methodology to fabricate TiO2-NPC homogeneously decorated with noble metal NPs with well-controlled material properties. The mechanistic understanding developed in this study can be useful for the future optimization of material properties of hybrid nanostructures versus interfacial interactions with the surrounding molecules.


Assuntos
Benzenossulfonatos/isolamento & purificação , Nanopartículas/química , Fotólise , Prata/química , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Aerossóis/química , Animais , Benzenossulfonatos/química , Catálise , Bovinos , Coloides/química , Nanopartículas/ultraestrutura , Soroalbumina Bovina/química , Poluentes Químicos da Água/química
19.
Langmuir ; 32(38): 9807-15, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27578534

RESUMO

A quantitative study of the stability of silver nanoparticles (AgNPs) conjugated with thiolated polyethylene glycol (SH-PEG) was conducted using gas-phase ion-mobility and mass analyses. The extents of aggregation and surface dissolution of AgNPs, as well as the amount of SH-PEG adsorption and desorption, were able to be characterized simultaneously for the kinetic study. The results show that the SH-PEG with a molecular mass of 6 kg/mol (SH-PEG6K) was able to adsorb to the surface of AgNP to form PEG6K-HS-AgNP conjugates, with the maximum surface adsorbate density of ∼0.10 nm(-2). The equilibrium binding constant for SH-PEG6K on AgNPs was calculated as ∼(4.4 ± 0.9) × 10(5) L/mol, suggesting a strong affinity due to thiol bonding to the AgNP surface. The formation of SH-PEG6K corona prevented PEG6K-HS-AgNP conjugates from aggregation under the acidic environment (pH 1.5), but dissolution of core AgNPs occurred following a first-order reaction. The rate constant of Ag dissolution from PEG6K-HS-AgNP was independent of the starting surface packing density of SH-PEG6K on AgNP (σ0), indicating that the interactions of H(+) with core AgNP were not interfered by the presence of SH-PEG6K corona. The surface packing density of SH-PEG6K decreased simultaneously following a first-order reaction, and the desorption rate constant of SH-PEG6K from the conjugates was proportional to σ0. Our work presents the first quantitative study to illustrate the complex mechanism that involves simultaneous aggregation and dissolution of core AgNPs in combination with adsorption and desorption of SH-PEG. This work also provides a prototype method of coupled experimental scheme to quantify the change of particle mass versus the corresponding surface density of functional molecular species on nanoparticles.

20.
Langmuir ; 32(24): 6123-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27239890

RESUMO

We demonstrate a high-resolution method as an efficient tool to in situ characterize partially reversible assembly and aggregation of metal-organic framework (MOF) colloids. Based on the gas-phase electrophoresis, the primary size and the degree of aggregation of the MOF-525 crystals are tunable by pH adjustment and mobility selection. These findings allow for the further size control of MOF colloids and prove the capability of semiquantitative analysis for the MOF-based platforms in a variety of aqueous formulations (e.g., biomedical applications).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...