Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(22): 9695-9706, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622083

RESUMO

Selective methane oxidation is difficult chemistry. Here we describe a strategy for the electrocatalysis of selective methane oxidation by immobilizing tricopper catalysts on the cathodic surface. In the presence of dioxygen and methane, the activation of these catalysts above a threshold cathodic potential can initiate the dioxygen chemistry for O atom transfer to methane. The catalytic turnover is completed by facile electron injections into the tricopper catalysts from the electrode. This technology leads to dramatic enhancements in performance of the catalysts toward methane oxidation. Unprecedented turnover frequencies (>40 min-1) and high product throughputs (turnover numbers >30 000 in 12 h) are achieved for this challenging chemical transformation in water under ambient conditions. The technology is green and suitable for on-site direct conversion of methane into methanol.


Assuntos
Metano , Oxigenases , Catálise , Oxirredução , Oxigênio , Oxigenases/metabolismo
2.
J Am Chem Soc ; 143(9): 3359-3372, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629832

RESUMO

The active site of methanol dehydrogenase (MDH) contains a rare disulfide bridge between adjacent cysteine residues. As a vicinal disulfide, the structure is highly strained, suggesting it might work together with the pyrroloquinoline quinone (PQQ) prosthetic group and the Ca2+ ion in the catalytic turnover during methanol (CH3OH) oxidation. We purify MDH from Methylococcus capsulatus (Bath) with the disulfide bridge broken into two thiols. Spectroscopic and high-resolution X-ray crystallographic studies of this form of MDH indicate that the disulfide bridge is redox active. We observe an internal redox process within the holo-MDH that produces a disulfide radical anion concomitant with a companion PQQ radical, as evidenced by an optical absorption at 408 nm and a magnetically dipolar-coupled biradical in the EPR spectrum. These observations are corroborated by electron-density changes between the two cysteine sulfurs of the disulfide bridge as well as between the bound Ca2+ ion and the O5-C5 bond of the PQQ in the high-resolution X-ray structure. On the basis of these findings, we propose a mechanism for the controlled redistribution of the two electrons during hydride transfer from the CH3OH in the alcohol oxidation without formation of the reduced PQQ ethenediol, a biradical mechanism that allows for possible recovery of the hydride for transfer to an external NAD+ oxidant in the regeneration of the PQQ cofactor for multiple catalytic turnovers. In support of this mechanism, a steady-state level of the disulfide radical anion is observed during turnover of the MDH in the presence of CH3OH and NAD+.

3.
J Inorg Biochem ; 196: 110691, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31063931

RESUMO

In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward CuI ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB33-414 and PmoB55-414, each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0 mM CuII, it behaves like M. capsulatus (Bath) cultured under high copper stress with abundant membrane accumulation and high CuI content. The recombinant PmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-ray absorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are CuI proteins. All the PmoB proteins show evidence of a "dicopper site" according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB33-414 mutant. Reaction of the dicopper site with dioxygen produces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit.


Assuntos
Methylococcus capsulatus/enzimologia , Oxigenases/química , Oxigenases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cobre/química , Cobre/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...