Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 96: 105768, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135130

RESUMO

Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear. In the current study, we treated HL-60 and KG-1 AML cell lines with dinaciclib and investigated the potential mechanisms of dinaciclib-induced AML cell growth inhibition using flow cytometry and western blotting assays. Data from HL-60 and KG-1 AML cells were validated using human primary AML cells. The results showed that the growth inhibitory effect of dinaciclib was more sensitive in HL-60 cells (IC50: 8.46 nM) than in KG-1 cells (IC50: 14.37 nM). The protein decline in Cyclin A/B and CDK1 and cell cycle arrest in the G2/M phase were more profound in HL-60 cells, corresponding to its growth inhibition. Although the growth inhibition of KG-1 cells by dinaciclib was still pronounced, the cell cycle-associated proteins were relatively insensitive. In addition to cell cycle regulation, the activation/expression of ERK1/STAT3/MYC signaling was significantly reduced by dinaciclib in KG-1 cells compared with that in HL-60 cells. Regarding the results of primary AML cells, we observed ERK1/STAT3/MYC inhibition and cell cycle regulation in different patients. These findings suggest that the cell cycle-associated and ERK1/STAT3/MYC signaling pathways might be two distinct mechanisms by which dinaciclib inhibits AML cells, which could facilitate the development of combination therapy for AML in the future.


Assuntos
Óxidos N-Cíclicos , Indolizinas , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myc , Compostos de Piridínio , Humanos , Transdução de Sinais , Divisão Celular , Ciclo Celular , Proteínas de Ciclo Celular , Leucemia Mieloide Aguda/tratamento farmacológico , Fator de Transcrição STAT3
2.
Cell Commun Signal ; 21(1): 156, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370099

RESUMO

BACKGROUND: Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS: To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS: The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS: The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.


Assuntos
Núcleo Celular , Complexo de Golgi , Animais , Humanos , Complexo de Golgi/metabolismo , Fosforilação , Núcleo Celular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Mamíferos/metabolismo
3.
Hematol Oncol ; 41(3): 499-509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36790759

RESUMO

Our previous study demonstrated that myc, mitochondrial oxidative phosphorylation, mTOR, and stemness are independently responsible for chemoresistance in acute myeloid leukemia (AML) cells. This study aimed to identify potential mechanisms of chemoresistance of the "7 + 3" induction in AML by using a single-cell RNA sequencing (scRNA-seq) approach. In the present study, 13 untreated patients with de novo AML were enrolled and stratified into two groups: complete remission (CR; n = 8) and non-CR (n = 5). Single-cell RNA sequencing was used to analyze genetic profiles of 28,950 AML cells from these patients; results were validated using a previously published bulk RNA-seq dataset. Our study results showed chemoresistant AML cells had premature accumulation during early hematopoiesis. Hematopoietic stem cell-like cells from the non-CR group expressed more leukemic stem cell markers (CD9, CD82, IL3RA, and IL1RAP) than those from the CR group. Chemoresistant progenitor cells had impaired myeloid differentiation owing to early arrest of hematopoiesis. Notably, AML cells analyzed by scRNA-seq and bulk RNA-seq harbored a comparable myeloid lineage cell fraction, which internally validated our results. Using the TCGA database, our analysis demonstrated that patients with AML with higher expression of chemoresistant genetic markers (IL3RA and IL1RAP) had a worse overall survival (p < 0.01 for IL3RA; p < 0.05 for IL1RAP). In conclusion, AML cells responsive and resistant to the "7 + 3" induction were derived from a diverse cancerous hematopoietic stem cell population, as indicated by the specific genetic biomarkers obtained using scRNA-seq approach. Furthermore, arrest of hematopoiesis was shown to occur earlier in chemoresistant AML cells, furthering the current understanding of chemoresistance in AML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...