Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
PLoS One ; 7(3): e32893, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457723

RESUMO

BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C 60 fullerene (C 60). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C 60 were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C 60 injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.


Assuntos
Carbono/química , Sistemas de Liberação de Medicamentos , Nanocápsulas/efeitos adversos , Nanotubos de Carbono/efeitos adversos , Animais , Materiais Biocompatíveis , Citocinas/sangue , Mediadores da Inflamação/sangue , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...