Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Spine J ; 33(2): 417-428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37389696

RESUMO

PURPOSE: Full-endoscopic lumbar interbody fusion (FELIF) is a new-generation treatment for spondylolisthesis. However, owing to their unique characteristics, the two main endoscopic fusion trajectories, the trans-Kambin and posterolateral approaches, have important limitations. Herein, we aimed to introduce a new technique called Kambin Torpedo FELIF (KT-FELIF). METHODS: The KT-FELIF technique is based on the trans-Kambin approach. It additionally completes ipsilateral total facetectomy and contralateral direct decompression. Thus, this novel technique combines the advantages of the trans-Kambin and posterolateral approaches. RESULTS: We reported on the indications and technical steps of KT-FELIF and provided intraoperative and animated videos to clarify the procedure. Short-term follow-up based on 3-month postoperative computed tomography and plain films images taken at least 3 months after surgery showed adequate bony decompression, a large bone graft contact area, and good intervertebral trabecular bone growth without radiolucent lines between the graft, cage, and end plate. The clinical results, such as ipsilateral and contralateral visual analog scale and Oswestry disability index values, gradually improved at 1 and 3 months postoperatively. No complications were observed. CONCLUSIONS: KT-FELIF is a promising FELIF technique for achieving bilateral direct decompression through a unilateral approach while accomplishing thorough discectomy and endplate preparation.


Assuntos
Endoscopia , Pesquisa , Humanos , Placas Ósseas , Transplante Ósseo , Osso Esponjoso
2.
Nano Lett ; 21(8): 3355-3363, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856816

RESUMO

Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene-polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.

3.
Materials (Basel) ; 13(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348650

RESUMO

An experimental investigation was performed on the coefficients of friction (COFs) and wear properties of pure water and oil-in-water (O/W) working fluids containing carbon nanocapsules (CNCs) with concentrations ranging from 0 to 1.0 wt.%. For the O/W working fluid, the ratio of oil to water was set as 6%. It was shown that for the water working fluid, the COF decreased by around 20% as the CNC content increased from 0 to 1.0 wt.%. In contrast, the wear volume increased by 50% as the CNC addition increased from 0 to 0.5 wt.%, but it fell to a value slightly lower than that achieved using only pure water (i.e., no CNCs) as the CNC content was further increased to 1.0 wt.%. For the O/W emulsion, the addition of 0.8 wt.% CNCs reduced the COF by around 30% compared to that of the emulsion with no CNCs. Overall, the results showed that while the addition of a small quantity (6%) of oil to the water working fluid had a relatively small effect on the wear performance, the addition of an appropriate quantity of CNCs (i.e., 0.8 wt.%) resulted in a significantly lower COF and an improved wear surface.

4.
J Tribol ; 136(4): 0418011-418019, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25161338

RESUMO

An experimental investigation is performed into the tribological properties of mineral oil lubricants containing carbon nanocapsules (CNCs) additives with various concentrations (wt.%). Friction characteristics and wear behaviors at contact interfaces are examined by the block-on-ring tests, high-resolution transmission electron microscopy (HRTEM), and mapping (MAP) analysis. The results suggest that the addition of CNCs to the mineral oil yields an effective reduction in the friction coefficient at the contact interface. Molecular dynamics (MD) simulations clarify the lubrication mechanism of CNCs at the sliding system, indicating the tribological properties are essentially sensitive to the structural evolutions of CNCs.

5.
J Chem Phys ; 122(22): 224713, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15974709

RESUMO

This paper utilizes molecular-dynamics simulations to investigate the mechanical characteristics of a suspended (10, 10) single-walled carbon nanotube (SWCNT) during atomic force microscopy (AFM) nanoindentation at different temperatures. Spontaneous topological transition of the Stone-Wales (SW) defects is clearly observed in the indentation process. The present results indicate that under AFM-bending deformation, the mechanical properties of the SWCNT, e.g., the bending strength, are dependent on the wrapping angle. In addition, it is also found that the radial dependence of the reduced formation energy of the SW defects is reasonably insensitive only for the small tubes. However, for tube diameters greater than 2.4 nm [corresponding to the (18, 18) CNT], the SW defects tend to be more radius sensitive. The results indicate that the bending strength decreases significantly with increasing temperature. This study also investigates the variation in the mechanical properties of the nanotube with the density of C60 encapsulated within the nanotube at various temperatures. It is found that, at lower temperatures, the bending strength of the C60-filled nanotube increases with C60 density. However, the reverse tendency is observed at higher temperatures. Finally, the "sharpest tip" phenomena between the probe and the tube wall and the elastic recovery of the nanotube during the retraction process are also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...