Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 221: 118786, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779455

RESUMO

Currently, intercalation materials such as Prussian blue analogs have attracted considerable attention in water treatment applications due to their excellent size-based selectivity toward cations. This study aimed to explore the feasibility of using a nickel hexacyanoferrate (NiHCF) electrode for selective NH4+ capture from effluent from a municipal wastewater treatment plant. To assess the competitive intercalation between NH4+ and other common cations (Na+, Ca2+), a NiHCF//activated carbon (AC) hybrid capacitive deionization (CDI) cell was established to treat mixed-salt solutions. The results of cyclic voltammetry (CV) analysis showed a higher current response of the NiHCF electrode toward NH4+ ions than toward Na+ and Ca2+ ions. In a single-salt solution with NH4+, the optimized operating voltage of the hybrid CDI cell was 0.8 V, with a higher salt adsorption capacity (51.2 mg/g) than those obtained at other voltages (0.1, 0.4, 1.2 V). In a multisalt solution containing NH4+, Na+, and Ca2+ ions, the selectivity coefficients of NH4+/Ca2+ and NH4+/Na+ were 9.5 and 4.9, respectively. The feasibility of selective NH4+ capture using the NiHCF electrode in a hybrid CDI cell was demonstrated by treating the effluent from a municipal wastewater treatment plant (WWTP). The intercalation preference of the NiHCF electrode with the WWTP effluent was NH4+>K+>Na+>Ca2+>Mg2+, and NH4+ showed the highest salt adsorption capacity among the cations during consecutive cycles. Our results revealed that cations with smaller hydrated radii and lower (de)hydration energies were more favorably intercalated by the NiHCF electrode. The results provide important knowledge regarding the use of intercalation-type electrodes for selective nutrient removal and recovery from wastewater.


Assuntos
Compostos de Amônio , Purificação da Água , Eletrodos , Ferrocianetos , Íons , Níquel , Purificação da Água/métodos
2.
J Colloid Interface Sci ; 600: 199-208, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015512

RESUMO

Regenerable methods for phosphate (P) recycling have received intense attention due to their potential environmental and economic benefits. In this study, to improve the electrosorptive removal of P in membrane capacitive deionization, an activated carbon (AC) electrode was coated with a heterogeneous anion-exchange resin layer, and named the AE-AC composite electrode. It was shown that the AE-AC electrode exhibited a good capacitive behavior for electrical double-layer charging. The batch-mode experiments indicted that when the solution pH changed from 5 to 8, the predominant P species shifted from monovalent H2PO4- to divalent HPO42- that was preferentially electroadsorbed for competitive electrosorption with Cl-. Importantly, the AE-AC composite electrode significantly increased the selectivity coefficient of P over Cl- to 0.56 that was 2.24-fold greater than that of the uncoated AC electrode, at 1.2 V in single-pass mode operation. This improvement can be ascribed to the preferential transport of P through the thin coating layer containing quaternary amine functional groups. The permselectivity of the coating also significantly increased the electrosorption capacity of P from 0.031 to 0.101 mmol/g with a high charge efficiency (97%) by the reduction in the co-ion repulsion effect. When the reverse voltage (-1.2 V) was applied, electroadsorbed P was reversibly desorbed from the AE-AC electrode in repeated operation. This work suggests that coating an anion-exchange resin layer on the surface of a carbon electrode shows great potential to improve the selective removal of P through electrosorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...