Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Monit ; 13(9): 2406-12, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21850296

RESUMO

1,2-Dichloroethane (1,2-DCA) is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected in the groundwater nearby the VCM manufacturing plant. Zero-valent iron (ZVI) is capable of degrading a wide array of highly chlorinated contaminants; however, the reactivity of ZVI towards 1,2-DCA is very low. In this study, zero-valent copper nanoparticles have been synthesized for effective dechlorination of 1,2-DCA under reduction conditions of sodium borohydride. Copper nanoparticles consisted of mainly metallic copper (Cu(0)) with small amounts of cuprous oxide (Cu(2)O). They have surface areas of about 19.0 m(2) g(-1) and an average diameter of 15 nm. Batch experiments were conducted to test the effectiveness of copper nanoparticles for 1,2-DCA degradation using sodium borohydride as electron donors where the ORP was measured as -1100 mV. More than 80% of 1,2-DCA (30 mg L(-1)) was rapidly degraded within 2 h in the presence of both copper nanoparticles (2.5 g L(-1)) and borohydride (25 mM). No reduction of 1,2-DCA was observed when the system contained either copper nanoparticles alone or borohydride alone. The degradation intermediates included ethane and ethylene accounting for 79% and ∼1.5% of the 1,2-DCA lost, respectively. Potential environmental applications can be achieved by immobilizing copper nanoparticles onto the surface of reducing metals to form a reactive bimetallic structure.


Assuntos
Boroidretos/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Dicloretos de Etileno/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Catálise , Etano/química , Dicloretos de Etileno/análise , Etilenos/química , Água Subterrânea/química , Nanopartículas Metálicas/ultraestrutura , Poluentes Químicos da Água/análise
2.
Water Res ; 44(1): 131-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19800096

RESUMO

A 200m(2) pilot-scale field test successfully demonstrated the use of nanoscale zero-valent iron (NZVI) for effective remediation of groundwater contaminated with chlorinated organic compounds in Taiwan within six months. Both commercially available and on-site synthesized NZVI were used. A well-defined monitoring program allowing to collect three-dimensional spatial data from 13 nested multi-level monitoring wells was conducted to monitor geochemical parameters in groundwater. The degradation efficiency of vinyl chloride (VC) determined at most of monitoring wells was 50-99%. It was found that the injection of NZVI caused a significant change in total iron, total solid (TS) and suspended solid (SS) concentrations in groundwater. Total iron concentration showed a moderate and weak correlation with SS and TS, respectively, suggesting that SS may be used to indicate the NZVI distribution in groundwater. A decrease in oxidation-reduction potential (ORP) values from about -100 to -400mV after NZVI injection was observed. This revealed that NZVI is an effective means of achieving highly reducing conditions in the subsurface environment. Both VC degradation efficiency and ORP showed a correlative tendency as an increase in VC degradation efficiency corresponded to a decrease of ORP. This is in agreement with the previous studies suggesting that ORP can serve as an indicator for the NZVI reactivity.


Assuntos
Nanopartículas/química , Nanotecnologia/organização & administração , Cloreto de Vinil/química , Movimentos da Água , Hidrocarbonetos Clorados/química , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA