Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 6: 28326, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27325155

RESUMO

In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

2.
Opt Express ; 18 Suppl 4: A528-35, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21165085

RESUMO

We report on the effect of arrays of Au nanopillars of controlled size and spacing on the spectral response of a P3HT: PCBM bulk heterojunction solar cell. Prototype nanopillar-patterned devices have nearly the same overall power conversion efficiency as those without nanopillars. The patterned devices do show higher external quantum efficiency and calculated absorption in the wavelength range from approximately 640 nm to 720 nm, where the active layer is not very absorbing. The peak enhancement was approximately 60% at 675 nm. We find evidence that the corresponding resonance involves both localized particle plasmon excitation and multiple reflections/diffraction within the cavity formed by the electrodes. We explore the role of the attenuation coefficient of the active layer on the optical absorption of such an organic photovoltaic device.

3.
Waste Manag ; 30(7): 1371-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181468

RESUMO

Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.


Assuntos
Incineração/economia , Monóxido de Carbono/análise , Cidades , Análise Custo-Benefício , Dioxinas/análise , Eficiência , Poluentes Ambientais/análise , Poluição Ambiental/estatística & dados numéricos , Ácido Clorídrico/análise , Modelos Teóricos , Método de Monte Carlo , Óxidos de Nitrogênio/análise , Pesquisa Operacional , Óxidos de Enxofre/análise
4.
Phys Rev Lett ; 90(18): 185506, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12786023

RESUMO

Formation of monodispersed Co nanoclusters on a single-crystal Si3N4 dielectric film at room temperature is reported. A remarkably narrow size distribution with the average size of approximately 30 Co atoms has been obtained. We have confirmed that the average size of Co nanoclusters is independent of the Co coverage and the cluster areal density linearly proportions to the Co deposition amount even at high coverages. Also, we have found that Co nanoclusters deposited on Si3N4 are thermally stable with respect to cluster aggregation/coalescence. We propose that this novel phenomenon is a quantum size effect, manifested by local energy minima in the electronic shell structure of Co quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...