Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 11(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806580

RESUMO

(1) Background: To further validate METCAM/MUC18 as a diagnostic biomarker for prostate cancer, a modified Lateral Flow Immune Assay (LFIA) with increased sensitivity and specificity was designed by taking advantage of the extremely high affinity between biotin and streptavidin and used. (2) Methods: The combination of a commercial biotinylated rabbit antibody (EPP11278), or the home-made biotinylated chicken antibody, and the nano-gold conjugated home-made chicken antibody or a commercial rabbit antibody (EPP11278), had the higher sensitivity and specificity in this modified LFIA to establish calibration curves from the two recombinant METCAM/MUC18 proteins and were used for determining METCAM/MUC18 concentrations in serum specimens from normal individuals, benign prostatic hyperplasia (BPH) patients, prostatic intraepithelial neoplasia (PIN) patients, prostate cancer patients with various Gleason scores, and treated patients. (3) Results: Data obtained by this modified LFIA were statistically better than traditional LFIA and prostate-specific antigen (PSA) test. Interestingly, serum METCAM/MUC18 concentrations were higher in pre-malignant PIN patients than prostate cancer patients and both were higher than normal individuals, BPH patients, and treated patients. Serum METCAM/MUC18 concentrations were directly proportional to most serum PSA. (4) Conclusions: Elevated serum METCAM/MUC18 concentrations may be used for predicting the malignant potential of prostate cancer at an early premalignant (PIN) stage, which is not achievable by the current PSA test.

2.
JMIR Med Inform ; 8(11): e20031, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211025

RESUMO

BACKGROUND: Human sperm quality fluctuates over time. Therefore, it is crucial for couples preparing for natural pregnancy to monitor sperm motility. OBJECTIVE: This study verified the performance of an artificial intelligence-based image recognition and cloud computing sperm motility testing system (Bemaner, Createcare) composed of microscope and microfluidic modules and designed to adapt to different types of smartphones. METHODS: Sperm videos were captured and uploaded to the cloud with an app. Analysis of sperm motility was performed by an artificial intelligence-based image recognition algorithm then results were displayed. According to the number of motile sperm in the vision field, 47 (deidentified) videos of sperm were scored using 6 grades (0-5) by a male-fertility expert with 10 years of experience. Pearson product-moment correlation was calculated between the grades and the results (concentration of total sperm, concentration of motile sperm, and motility percentage) computed by the system. RESULTS: Good correlation was demonstrated between the grades and results computed by the system for concentration of total sperm (r=0.65, P<.001), concentration of motile sperm (r=0.84, P<.001), and motility percentage (r=0.90, P<.001). CONCLUSIONS: This smartphone-based sperm motility test (Bemaner) accurately measures motility-related parameters and could potentially be applied toward the following fields: male infertility detection, sperm quality test during preparation for pregnancy, and infertility treatment monitoring. With frequent at-home testing, more data can be collected to help make clinical decisions and to conduct epidemiological research.

3.
Analyst ; 138(17): 4967-74, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23817531

RESUMO

A major reason for infertility is due to male factors, including the quality of spermatozoa, which is a primary factor and often difficult to assess, particularly the total sperm concentration and its motile percentage. This work presents a simple microfluidic device to assess sperm quality by quantifying both total and motile sperm counts. The key design feature of the microfluidic device is two channels separated by a permeative phase-guide structure, where one channel is filled with raw semen and the other with pure buffer. The semen sample was allowed to reach equilibrium in both chambers, whereas non-motile sperms remained in the original channel, and roughly half of the motile sperms would swim across the phase-guide barrier into the buffer channel. Sperms in each channel agglomerated into pellets after centrifugation, with the corresponding area representing total and motile sperm concentrations. Total sperm concentration up to 10(8) sperms per ml and motile percentage in the range of 10-70% were tested, encompassing the cutoff value of 40% stated by World Health Organization standards. Results from patient samples show compact and robust pellets after centrifugation. Comparison of total sperm concentration between the microfluidic device and the Makler chamber reveal they agree within 5% and show strong correlation, with a coefficient of determination of R(2) = 0.97. Motile sperm count between the microfluidic device and the Makler chamber agrees within 5%, with a coefficient of determination of R(2) = 0.84. Comparison of results from the Makler Chamber, sperm quality analyzer, and the microfluidic device revealed that results from the microfluidic device agree well with the Makler chamber. The sperm microfluidic chip analyzes both total and motile sperm concentrations in one spin, is accurate and easy to use, and should enable sperm quality analysis with ease.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas , Espermatozoides/citologia , Espermatozoides/fisiologia , Humanos , Masculino , Controle de Qualidade , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...