Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(17): 172001, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570435

RESUMO

We present new models utilizing QCD-like dark sectors to resolve small-scale structure problems. These models of resonant self-interacting dark matter in a dark sector with QCD are based on analogies to the meson spectra in standard model QCD. We introduce a simple model that realizes resonant self-interaction (analogous to the ϕ-K-K system) and thermal freeze-out, in which dark mesons are made of two light quarks. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the ϒ(4S)-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while using lattice results to determine feasibility.

2.
Phys Rev Lett ; 126(18): 181801, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018792

RESUMO

We study hidden-sector particles at past (CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration and NuCal), present (NA62, SeaQuest, and DarkQuest), and future (LongQuest) experiments at the high-energy intensity frontier. We focus on exploring the minimal vector portal and the next-to-minimal models in which the productions and decays are decoupled. These next-to-minimal models have mostly been devised to explain experimental anomalies while avoiding existing constraints. We demonstrate that proton fixed-target experiments provide one of the most powerful probes for the MeV to few GeV mass range of these models, using inelastic dark matter (iDM) as an example. We consider an iDM model with a small mass splitting that yields the observed dark matter relic abundance, and a scenario with a sizable mass splitting that can also explain the muon g-2 anomaly. We set strong limits based on the CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration and NuCal experiments, which come close to excluding iDM as a full-abundance thermal dark matter candidate in the MeV to GeV mass range. We also make projections based on NA62, SeaQuest, and DarkQuest and update the constraints of the minimal dark photon parameter space. We find that NuCal sets the only existing constraint in ε∼10^{-8}-10^{-4} regime, reaching ∼800 MeV in dark photon mass due to the resonant enhancement of proton bremsstrahlung production. These studies also motivate LongQuest, a three-stage retooling of the SeaQuest experiment with short (≲5 m), medium (∼5 m), and long (≳35 m) baseline tracking stations and detectors as a multipurpose machine to explore new physics.

3.
Phys Rev Lett ; 122(7): 071801, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848629

RESUMO

We set constraints and future sensitivity projections on millicharged particles (MCPs) based on electron scattering data in numerous neutrino experiments, starting with MiniBooNE and the Liquid Scintillator Neutrino Detector (LSND). Both experiments are found to provide new (and leading) constraints in certain MCP mass windows: 5-35 MeV for LSND and 100-180 MeV for MiniBooNE. Furthermore, we provide projections for the ongoing Fermilab SBN program, the Deep Underground Neutrino Experiment (DUNE), and the proposed Search for Hidden Particles (SHIP) experiment. In the SBN program, SBND and MicroBooNE have the capacity to provide the leading bounds in the 100-300 MeV mass regime. DUNE and SHIP are capable of probing parameter space for MCP masses in the range of 5 MeV-5 GeV that is significantly beyond the reach of existing bounds, including those from collider searches and, in the case of DUNE, the SLAC mQ experiment.

4.
Phys Rev Lett ; 123(26): 261801, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951430

RESUMO

Heavy neutrinos with additional interactions have recently been proposed as an explanation to the MiniBooNE excess. These scenarios often rely on marginally boosted particles to explain the excess angular spectrum, thus predicting large rates at higher-energy neutrino-electron scattering experiments. We place new constraints on this class of models based on neutrino-electron scattering sideband measurements performed at MINERνA and CHARM-II. A simultaneous explanation of the angular and energy distributions of the MiniBooNE excess in terms of heavy neutrinos with light mediators is severely constrained by our analysis. In general, high-energy neutrino-electron scattering experiments provide strong constraints on explanations of the MiniBooNE observation involving light mediators.

5.
Phys Rev Lett ; 116(22): 221302, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314712

RESUMO

We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.

6.
Phys Rev Lett ; 110(13): 130404, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581300

RESUMO

From ultracold atoms to quantum chromodynamics, reliable ab initio studies of strongly interacting fermions require numerical methods, typically in some form of quantum Monte Carlo calculation. Unfortunately, (non)relativistic systems at finite density (spin polarization) generally have a sign problem, such that those ab initio calculations are impractical. It is well-known, however, that in the relativistic case imaginary chemical potentials solve this problem, assuming the data can be analytically continued to the real axis. Is this feasible for nonrelativistic systems? Are the interesting features of the phase diagram accessible in this manner? By introducing complex chemical potentials, for real total particle number and imaginary polarization, the sign problem is avoided in the nonrelativistic case. To give a first answer to the above questions, we perform a mean-field study of the finite-temperature phase diagram of spin-1/2 fermions with imaginary polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...