Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38837630

RESUMO

OBJECTIVE: TFG mutations have previously been implicated in autosomal recessive hereditary spastic paraplegia (HSP), also known as SPG57. This study aimed to investigate the clinical and molecular features of TFG mutations in a Taiwanese HSP cohort. METHODS: Genetic analysis of TFG was conducted in 242 unrelated Taiwanese HSP patients using a targeted resequencing panel covering the entire coding regions of TFG. Functional assays were performed using an in vitro cell model to assess the impact of TFG variants on protein function. Additionally, other representative TFG mutant proteins were examined to understand the broader implications of TFG mutations in HSP. RESULTS: The study identified a novel homozygous TFG c.177A>C (p.(Lys59Asn)) variant in a family with adolescent-onset, pure form HSP. Functional analysis revealed that the Lys59Asn TFG variant, similar to other HSP-associated TFG mutants, exhibited a low affinity between TFG monomers and abnormal assembly of TFG homo-oligomers. These structural alterations led to aberrant intracellular distribution, compromising TFG's protein secretion function and resulting in decreased cellular viability. INTERPRETATION: These findings confirm that the homozygous TFG c.177A>C (p.(Lys59Asn)) variant is a novel cause of SPG57. The study expands our understanding of the clinical and mutational spectrum of TFG-associated diseases, highlighting the functional defects associated with this specific TFG variant. Overall, this research contributes to the broader comprehension of the genetic and molecular mechanisms underlying HSP.

2.
Cell Death Differ ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879724

RESUMO

Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.

3.
EMBO Mol Med ; 16(5): 1091-1114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589651

RESUMO

PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.


Assuntos
Doença de Charcot-Marie-Tooth , Mutação de Sentido Incorreto , Animais , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Modelos Animais de Doenças , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Nucleares , Proteínas Adaptadoras de Transdução de Sinal
4.
Ann Clin Transl Neurol ; 10(9): 1603-1612, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420318

RESUMO

OBJECTIVE: Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by slowly progressive lower limb spasticity and weakness. HSP type 54 (SPG54) is autosomal recessively inherited and caused by mutations in the DDHD2 gene. This study investigated the clinical characteristics and molecular features of DDHD2 mutations in a cohort of Taiwanese patients with HSP. METHODS: Mutational analysis of DDHD2 was performed for 242 unrelated Taiwanese patients with HSP. The clinical, neuroimaging, and genetic features of the patients with biallelic DDHD2 mutations were characterized. A cell-based study was performed to assess the effects of the DDHD2 mutations on protein expression. RESULTS: SPG54 was diagnosed in three patients. Among them, two patients carried compound heterozygous DDHD2 mutations, p.[R112Q];[Y606*] and p.[R112Q];[p.D660H], and the other one was homozygous for the DDHD2 p.R112Q mutation. DDHD2 p.Y606* is a novel mutation, whereas DDHD2 p.D660H and p.R112Q have been reported in the literature. All three patients manifested adult onset complex HSP with additional cerebellar ataxia, polyneuropathy, or cognitive impairment. Brain proton magnetic resonance spectroscopy revealed an abnormal lipid peak in thalamus of all three patients. In vitro studies demonstrated that all the three DDHD2 mutations were associated with a considerably lower DDHD2 protein level. INTERPRETATION: SPG54 was detected in approximately 1.2% (3 of 242) of the Taiwanese HSP cohort. This study expands the known mutational spectrum of DDHD2, provides molecular evidence of the pathogenicity of the DDHD2 mutations, and underlines the importance of considering SPG54 as a potential diagnosis of adult-onset HSP.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Adulto , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Fosfolipases/genética , Mutação , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Homozigoto
5.
Ann Clin Transl Neurol ; 10(3): 353-362, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36607129

RESUMO

OBJECTIVE: NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort. METHODS: We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene-based splicing assay, RT-PCR analysis on the patients' RNA, and cell-based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression. RESULTS: Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3' end of NIPA1 exon 3 near the exon-intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression. INTERPRETATION: SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent-onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy.


Assuntos
Epilepsia , Paraplegia Espástica Hereditária , Adolescente , Humanos , Criança , Paraplegia Espástica Hereditária/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Paraplegia
6.
J Formos Med Assoc ; 122(2): 132-138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36031490

RESUMO

BACKGROUND: Mutations in the neurofilament light polypeptide gene (NEFL) are an uncommon cause of Charcot-Marie-Tooth disease (CMT). The aim of this study is to elucidate the clinical characteristics and genetic spectrum of NEFL-related neuropathy in a Taiwanese CMT cohort. METHODS: Mutational analysis of the coding regions of NEFL was performed by Sanger sequencing or targeted resequencing. Twenty-one patients from nine CMT pedigrees, identified from a cohort of 508 unrelated CMT patients, were found to have a NEFL mutation. Genetic, clinical and electrophysiological features were analyzed. RESULTS: Six NEFL mutations were identified, including two novel ones (p.P8S, p.N98Y). NEFL p.E396K was the most common mutation, accounting for 33.3% of the patients in our cohort. All patients manifested sensorimotor polyneuropathy with a mean age of disease onset of 13.5 ± 9.6 (1-40) years. Their motor nerve conduction velocities (MNCVs) of the ulnar nerve ranged from 22.1 to 48.7 m/s. Seventy percent of the patients could be classified as intermediate CMT with ulnar MNCVs between 25 and 45 m/s. Six of the 21 patients (28.6%) had additional features of central nervous system (CNS) involvement, including motor developmental delay, spasticity, cerebellar signs, neuropathic pain and scoliosis. CONCLUSION: NEFL mutations account for 1.8% (9/508) of the CMT patients in Taiwan. The present study delineates the clinical and genetic characteristics of NEFL-related neuropathy in Taiwan, and highlights that ulnar MNCV above 25 m/s and CNS involvement may serve as diagnostic clues for NEFL-related neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Taiwan , Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas de Neurofilamentos/genética
8.
Parkinsonism Relat Disord ; 103: 144-149, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36155026

RESUMO

BACKGROUND: Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders characterized by slowly progressive lower limbs spasticity and weakness. HSP type 30 (SPG30) is a HSP subtype caused by mutations in the kinesin family member 1A gene (KIF1A) and could be either autosomal dominantly or recessively inherited. The aim of this study was to investigate the clinical and genetic features of KIF1A mutations in a Taiwanese HSP cohort. METHODS: Mutational analysis of KIF1A was performed in 242 unrelated Taiwanese patients of Han Chinese ethnicity with clinically suspected HSP using targeted resequencing panel covering the entire coding regions of KIF1A. Clinical, electrophysiological and neuroimaging features of the HSP patients carrying a KIF1A mutation were characterized. RESULTS: Three different KIF1A mutations were identified in three patients with autosomal dominantly inherited HSP. Among them, KIF1A p.E19K was a novel mutation. The patient harboring KIF1A p.G321D presented with pure HSP, while the individuals carrying KIF1A p.E19K or p.R316Q manifested complex HSP with additional axonal sensorimotor polyneuropathy. The patients carrying KIF1A p.R316Q also had thoracic cord atrophy, thin corpus callosum and white matter hyperintensity. CONCLUSION: SPG30 accounts for 1.2% (3/242) of patients in the Taiwanese HSP cohort, suggesting that it is an uncommon HSP subtype in Taiwan. This study delineates the clinical and genetic features of SPG30 in Taiwan and provides useful information for the diagnosis and management of SPG30, especially in patients of Han Chinese descent.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Cinesinas/genética , Mutação/genética , Povo Asiático/genética , Atrofia
9.
STAR Protoc ; 3(3): 101541, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042881

RESUMO

We describe steps to 1) identify ascending and descending monotonic key genes from time-ordered stem cell differentiation expression data, 2) construct time-ordered transcriptional regulatory networks, and 3) infer the involvement of transcription factors along the differentiation process. For complete details on the use and execution of this protocol, please refer to Wong et al. (2020).


Assuntos
Redes Reguladoras de Genes , RNA , Diferenciação Celular/genética , Redes Reguladoras de Genes/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
10.
J Formos Med Assoc ; 121(1 Pt 1): 126-133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33637369

RESUMO

BACKGROUND/PURPOSE: Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders characterized by slowly progressive lower limbs spasticity and weakness. HSP type 15 (SPG15) is an autosomal recessive subtype caused by ZFYVE26 mutations. The aim of this study was to investigate the frequency and clinical and genetic features of ZFYVE26 mutations in a Taiwanese HSP cohort. METHODS: Mutational analysis of the coding regions of ZFYVE26 was performed by targeted resequencing in the 195 unrelated Taiwanese patients with HSP. All of the patients were of Han Chinese ethnicity. Clinical, neuropsychological, electrophysiological evaluations and imaging studies were collected. RESULTS: Among the 195 patients, only one SPG15 patient was identified. The patient had a novel recessive ZFYVE26 frameshift truncating mutation, p.R1806Gfs∗36 (c.5415delC), and presented with insidious onset spastic weakness of lower-extremities and cognitive impairment. Neuropsychological assessment revealed deficits in executive function, visual naming, category verbal fluency, and manual dexterity. Brain MRI showed thin corpus callosum and the "ears of lynx" sign. CONCLUSION: SPG15 accounts for approximately 0.5% (1/195) of the Taiwanese HSP cohort. This study identified the first Taiwanese SPG15 case and delineated the clinical, genetic, neuropsychological, and neuroimaging features. These findings expand the mutational spectrum of ZFYVE26 and also broaden the knowledge of clinical and neuropsychological characteristics of SPG15.


Assuntos
Proteínas de Transporte/genética , Paraplegia Espástica Hereditária , Humanos , Mutação , Paraplegia Espástica Hereditária/genética , Taiwan
11.
Mov Disord ; 37(4): 767-777, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951052

RESUMO

BACKGROUND: Polyglutamine (polyQ) diseases are dominant neurodegenerative diseases caused by an expansion of the polyQ-encoding CAG repeats in the disease-causing gene. The length of the CAG repeats is the major determiner of the age at onset (AO) of polyQ diseases, including Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). OBJECTIVE: We set out to identify common genetic variant(s) that may affect the AO of polyQ diseases. METHODS: Three hundred thirty-seven patients with HD or SCA3 were enrolled for targeted sequencing of 583 genes implicated in proteinopathies. In total, 16 genes were identified as containing variants that are associated with late AO of polyQ diseases. For validation, we further investigate the variants of PIAS1 because PIAS1 is an E3 SUMO (small ubiquitin-like modifier) ligase for huntingtin (HTT), the protein linked to HD. RESULTS: Biochemical analyses revealed that the ability of PIAS1S510G to interact with mutant huntingtin (mHTT) was less than that of PIAS1WT , resulting in lower SUMOylation of mHTT and lower accumulation of insoluble mHTT. Genetic knock-in of PIAS1S510G in a HD mouse model (R6/2) ameliorated several HD-like deficits (including shortened life spans, poor grip strength and motor coordination) and reduced neuronal accumulation of mHTT. CONCLUSIONS: Our findings suggest that PIAS1 is a genetic modifier of polyQ diseases. The naturally occurring variant, PIAS1S510G , is associated with late AO in polyQ disease patients and milder disease severity in HD mice. Our study highlights the possibility of targeting PIAS1 or pathways governing protein homeostasis as a disease-modifying approach for treating patients with HD. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Huntington , Proteostase , Animais , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Ligases/metabolismo , Camundongos , Peptídeos , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
12.
Ann Clin Transl Neurol ; 8(11): 2121-2131, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34652888

RESUMO

OBJECTIVE: Mutations in the colony-stimulating factor 1 receptor gene (CSF1R) were identified as a cause of adult-onset inherited leukoencephalopathy. The present study aims at investigating the frequency, clinical characteristics, and functional effects of CSF1R mutations in Taiwanese patients with adult-onset leukoencephalopathy. METHODS: Mutational analysis of CSF1R was performed in 149 unrelated individuals with leukoencephalopathy by a targeted resequencing panel covering the entire coding regions of CSF1R. In vitro analysis of the CSF1-induced autophosphorylation activities of mutant CSF1R proteins was conducted to assess the pathogenicity of the CSF1R mutations. RESULTS: Among the eight CSF1R variants identified in this study, five mutations led to a loss of CSF1-induced autophosphorylation of CSF1R proteins. Four mutations (p.K586*, p.G589R, p.R777Q, and p.R782C) located within the tyrosine kinase domain of CSF1R, whereas the p.T79M mutation resided in the immunoglobulin-like domain. The five patients carrying the CSF1R mutations developed cognitive decline at age 41, 43, 50, 79, and 86 years, respectively. Psychiatric symptoms and behavior changes were observed in four of the five patients. The executive function and processing speed were severely impaired at an early stage, and their cognitive function deteriorated rapidly within 3-4 years. Diffusion-restricted lesions at the subcortical regions and bilateral corticospinal tracts were found in three patients. INTERPRETATION: CSF1R mutations account for 3.5% (5/149) of the adult-onset leukoencephalopathy in Taiwan. CSF1R mutations outside the tyrosine kinase domain may also disturb the CSF1R function and lead to the clinical phenotype. Molecular functional validation is important to determine the pathogenicity of novel CSF1R variants.


Assuntos
Disfunção Cognitiva , Leucoencefalopatias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Leucoencefalopatias/complicações , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Taiwan
13.
Parkinsonism Relat Disord ; 92: 7-12, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649108

RESUMO

BACKGROUND: Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disorder caused by mutations in the ABCD1 gene. The clinical manifestations of ALD vary widely with some patients presenting with adrenomyeloneuropathy (AMN) that resembles the phenotype of hereditary spastic paraplegia (HSP). The aim of this study is to investigate the frequency, spectrum, and clinical features of ABCD1 mutations in Taiwanese patients with HSP phenotype. METHODS: Mutational analysis of the ABCD1 gene was performed in 230 unrelated Taiwanese patients with clinically suspected HSP by targeted resequencing. Clinical, electrophysiological, and neuroimaging features of the patients carrying an ABCD1 pathogenic mutation were characterized. RESULTS: Ten different ABCD1 mutations were identified in eleven patients, including two novel mutations (p.Q177Pfs*17 and p.Y357*) and eight ever reported in ALD cases of other ethnicities. All patients were male and exhibited slowly progressive spastic paraparesis with onset ages ranging from 21 to 50 years. Most of them had additional non-motor symptoms, including autonomic dysfunction in nine patients, sensory deficits in seven, premature baldness in seven, skin hyperpigmentation in five, psychiatric symptoms in one and cerebellar ataxia in one. Seven of the ten patients who ever received nerve conduction studies showed axonal polyneuropathy. Magnetic resonance imaging (MRI) revealed diffuse spinal cord atrophy in seven patients, cerebral white matter hyperintensity in one patient, and cerebellar involvement in one patient. CONCLUSIONS: ABCD1 mutations account for 4.8% (11/230) of the cases with HSP phenotype in Taiwan. This study highlights the importance to consider ABCD1 mutations in patients with clinically suspected HSP of unknown genetic causes.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Povo Asiático/genética , Paraplegia Espástica Hereditária/genética , Adulto , Idade de Início , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Taiwan , Adulto Jovem
14.
J Neurol Sci ; 428: 117600, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34333379

RESUMO

The AFG3L2 gene encodes AFG3-like protein 2, which is a subunit of human mitochondrial ATPases associated with various cellular protease activities (m-AAA). The clinical spectrum of AFG3L2 mutations is broad. Dominant AFG3L2 mutations can cause autosomal dominant spinocerebellar ataxia type 28 (SCA28), whereas biallelic AFG3L2 mutations may lead to spastic ataxia 5 (SPAX5). However, the role of AFG3L2 mutations in autosomal recessive spinocerebellar ataxia (SCAR) remains elusive. The aim of this study is to delineate the clinical features and spectrum of AFG3L2 mutations in a Taiwanese cohort with cerebellar ataxia. Mutational analyses of AFG3L2 were carried out by targeted resequencing in a cohort of 133 unrelated patients with molecularly undetermined cerebellar ataxia. We identified one single patient carrying compound heterozygous mutations in AFG3L2, p.[R632*];[V723M] (c.[1894C > T];[2167G > A]). The patient has suffered from apparently sporadic and slowly progressive cerebellar ataxia, ptosis, and ophthalmoparesis since age 55 years. These findings expand the clinical spectrum of AFG3L2 mutations and suggest a new subtype of late-onset SCAR caused by biallelic AFG3L2 mutations.


Assuntos
Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Mutação de Sentido Incorreto , Ataxias Espinocerebelares , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Humanos , Pessoa de Meia-Idade , Fenótipo , Ataxias Espinocerebelares/genética
15.
Parkinsonism Relat Disord ; 87: 87-91, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34015694

RESUMO

AIM: To investigate the clinical and genetic features of hereditary spastic paraplegia (HSP) type 3A (SPG3A) in Taiwan. METHODS: Mutational analysis of the ATL1 gene was performed for 274 unrelated Taiwanese HSP patients. The diagnosis of SPG3A was ascertained by the presence of a heterozygous pathogenic mutation in ATL1. The SPG3A patients received clinical, electrophysiological, and neuroimaging evaluations. Disease severity was assessed by using Spastic Paraplegia Rating Scale (SPRS) and disability score. Nineteen single nucleotide polymorphism (SNP) markers flanking ATL1 were genotyped for haplotype analysis of ATL1 p.R416C mutation. RESULTS: Eighteen SPG3A patients from 11 families were identified. They typically presented a pure form HSP phenotype with disease onset ranging from age 1-68 years. Five heterozygous ATL1 mutations were identified, including p.R239C, p.V253I, p.Y336H, p.P342R and p.R416C. ATL1 p.R416C was the most common mutation and presented in five SPG3A pedigrees. Haplotype analyses demonstrated a shared haplotype in the 12 individuals carrying a p.R416C allele. CONCLUSION: SPG3A accounts for 4% (11 out of 274) of HSP in the Taiwanese cohort. Patents with the ATL1 p.R416C mutation in Taiwan may descend from a common ancestor. This study defines the clinical and genetic features of SPG3A in Taiwan and provides useful information for the diagnosis and management, especially in patients of Han Chinese descent.


Assuntos
Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Efeito Fundador , Humanos , Masculino , Pessoa de Meia-Idade , Paraplegia Espástica Hereditária/epidemiologia , Taiwan/epidemiologia , Adulto Jovem
16.
Stroke ; 52(3): 985-993, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535780

RESUMO

BACKGROUND AND PURPOSE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic cerebral small vessel disease. The role of intracerebral hemorrhage (ICH) in CADASIL remains elusive. The present study aims to investigate the prevalence, characteristics, and risk factors for ICH in CADASIL. METHODS: This retrospective cross-sectional study investigated ICH and cerebral microbleeds (CMBs) in brain susceptibility-weighted imaging or T2*-weighted gradient-recalled echo images of 127 Taiwanese patients with genetically confirmed CADASIL. We analyzed CMBs, lacunes, white matter hyperintensity, and perivascular space. The total small vessel disease score (range, 0-4) was calculated to estimate the overall magnetic resonance imaging burden of small vessel disease. Multivariate regression analysis was performed to identify factors related to ICH lesions in CADASIL. RESULTS: Thirty-seven ICH lesions, including 15 symptomatic and 22 asymptomatic lesions, were found in 27 (21.3% [95% CI, 14.0%-30.9%]) of the 127 patients with CADASIL. The thalamus and lobar regions were the most common ICH locations, and 72.7% of the lobar hemorrhages occurred silently. Patients with CADASIL with ICH lesions more often had hypertension and a higher total small vessel disease score than those without ICH (odds ratio [95% CI]: 3.22 [1.25-8.30] and 3.79 [1.51-9.51]). The presence of CMBs in the brain stem and a total CMB count >10 were independently associated with ICH lesions in patients with CADASIL, with odds ratio (95% CI) of 5.82 (1.80-18.80) and 3.83 (1.08-13.67), respectively. CONCLUSIONS: ICH is an underestimated but important manifestation of CADASIL. The location and number of CMBs are associated with the presence of ICH lesions in patients with CADASIL.


Assuntos
Hemorragia Cerebral/epidemiologia , Infarto Cerebral/epidemiologia , Leucoencefalopatias/epidemiologia , Neuroimagem/métodos , Idoso , Artérias/patologia , Encéfalo/patologia , CADASIL , Hemorragia Cerebral/complicações , Infarto Cerebral/complicações , Circulação Cerebrovascular , Estudos Transversais , Feminino , Humanos , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Estudos Retrospectivos , Fatores de Risco
18.
BMC Genomics ; 21(1): 467, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32635896

RESUMO

BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells. RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process. CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.


Assuntos
Diferenciação Celular/genética , Células Mesangiais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Biomarcadores/metabolismo , Células Cultivadas , Técnicas de Cocultura , Redes Reguladoras de Genes , Humanos , Células Mesangiais/fisiologia , Células-Tronco Mesenquimais/citologia , Contração Muscular , Músculo Liso Vascular/fisiologia , RNA-Seq , Fatores de Transcrição/metabolismo
19.
Cerebellum ; 19(4): 544-549, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32367277

RESUMO

Mutations in STUB1 have been identified to cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16), also named as Gordon Holmes syndrome, which is characterized by cerebellar ataxia, cognitive decline, and hypogonadism. Additionally, several heterozygous mutations in STUB1 have recently been described as a cause of autosomal dominant spinocerebellar ataxia type 48. STUB1 encodes C-terminus of HSC70-interacting protein (CHIP), which functions as an E3 ubiquitin ligase and co-chaperone and has been implicated in several neurodegenerative diseases. In this study, we identified two SCAR16 pedigrees from 512 Taiwanese families with cerebellar ataxia. Two compound heterozygous mutations in STUB1, c.[433A>C];[721C>T] (p.[K145Q];[R241W]) and c.[433A>C];[694T>G] (p.[K145Q];[C232G]), were found in each SCAR16 family by Sanger sequencing, respectively. Among them, STUB1 p.R241W and p.C232G were novel mutations. SCAR16 seems to be an uncommon ataxic syndrome, accounting for 0.4% (2/512) of our cohort with cerebellar ataxia. Clinically, the three patients from the two SCAR16 families presented with cerebellar ataxia alone or in combination with cognitive impairment. The brain MRIs showed a marked cerebellar atrophy of the patients. In conclusion, SCAR16 is an important but often neglected diagnosis of cerebellar ataxia of unknown cause, and the isolated cerebellar ataxia without involvement of other systems cannot be a basis to exclude the possibility of STUB1-related disease.


Assuntos
Ataxia Cerebelar/genética , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Ataxia Cerebelar/patologia , Cerebelo/patologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Humanos , Hipogonadismo/patologia , Masculino , Mutação , Linhagem , Taiwan , Adulto Jovem
20.
Ann Clin Transl Neurol ; 7(6): 965-971, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32462798

RESUMO

OBJECTIVE: The NEK1 gene has been recently implicated in amyotrophic lateral sclerosis (ALS). This study aims to assess the influence of NEK1 variants on the occurrence of ALS and investigate the spectrum and clinical features of NEK1 loss-of-function (LOF) variants in a Taiwanese ALS cohort. METHODS: We screened 325 unrelated ALS patients for coding variants in NEK1 by targeted resequencing and queried the Taiwan Biobank database for NEK1 coding variants in 1000 Taiwanese healthy individuals. The clinical features of the patients with a NEK1 LOF variant were analyzed. RESULTS: Six patients and two healthy individuals carried NEK1 LOF variants. The rare missense variants with minor allele frequencies <0.1% in Taiwanese population were present in 2.8% of the ALS patients and 1.6% of the healthy subjects. NEK1 LOF variants, but not rare missense variants, are significantly enriched in the ALS patients (P = 0.0037 and 0.24, Fisher's exact test). The odds ratio of an individual carrying a NEK1 LOF variant to develop ALS is 9.39 (95% confidence interval: 1.88-46.7). All the six patients carrying a NEK1 LOF variant had a hand-onset ALS with an onset age from 52 to 64 years. Comparing with ALS patients without a NEK1 LOF variant, patients with a NEK1 LOF variant tend to have a hand-onset disease (P = 0.0008, Fisher's exact test). INTERPRETATION: Our study supports the pathogenic role of NEK1 LOF variants and demonstrates their spectrum and clinical features in a Taiwanese cohort with ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Mãos/fisiopatologia , Quinase 1 Relacionada a NIMA/genética , Idoso , Feminino , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...