Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 65(6): 668-681, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991095

RESUMO

Dermal exposure is an important exposure route for occupational exposure and risk assessment. A fluorescence method has been developed to quantify occupational dermal exposure based on a visualization technique, using Tinopal SWN as a fluorescent tracer. The method was developed within the framework of a large experimental study, the SysDEA project. In SysDEA, dermal exposure was measured with different methods for 10 simulated exposure situations by sampling powder and liquid formulations containing Tinopal SWN on coveralls and patches and subsequently chemically analysing them. For the fluorescence method, photographs of exposed volunteers who performed the experiments were taken inside a room which consisted of an optimized arrangement of several UV irradiating tube light brackets, reflective and non-reflective backgrounds for maximum light diffusion and a camera. Image processing analysis software processed these photographs to obtain corresponding light intensity in terms of summed pixel values. To be able to estimate the amount of Tinopal SWN, 25% of the measured data from the SysDEA experiments were used to calibrate by correlating the summed pixel values from the photographs to actual measured exposure values using a second order regression model. For spraying both high and low viscosity liquids, showing uniformly distributed exposure patterns, strong Pearson correlation coefficients (R > 0.77) were observed. In contrast, the correlations were either inconsistently poor (R = -0.17 to 0.28 for pouring, rolling high viscosity liquid, manually handling objects immersed in low viscosity liquid and handling objects contaminated with powder), moderate (R = 0.73 for dumping of powder), or strong (R = 0.83 and 0.77 for rolling low viscosity liquid and manually handling objects immersed in high viscosity liquid). A model for spraying was developed and calibrated using 25% of the available experimental data for spraying and validated using the remaining 75%. Under given experimental conditions, the fluorescence method shows promising results and can be used for the quantification of dermal exposure for different body parts (excluding hands) for spraying-like scenarios that have a more uniform exposure pattern, but more research is needed for exposure scenarios with less uniform exposure patterns. For the estimation of exposure levels, the surface loading limit should be lower than 1.5░µg/cm2 (a lower limit could not be quantified based on experiments conducted in this study) on a large surface, like a coverall, which should be ideally perpendicular to the camera.


Assuntos
Exposição Ocupacional , Mãos , Humanos , Medição de Risco , Pele , Manejo de Espécimes
2.
Ann Work Expo Health ; 64(9): 944-958, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32761049

RESUMO

For many work situations only insufficient exposure data are available to perform proper risk assessment. Because measuring worker exposure can be time consuming and resource intense, the availability of reliable exposure models is important when performing risk assessments. However, the development and improvement of exposure models are hampered by scarcity of sound exposure data as well as by lack of information on relevant exposure factors and conditions of exposure. This paper describes a study where inhalation and dermal exposure data were collected under defined conditions. Exposure scenarios examined included tasks that have not been investigated in previous validation studies. The results of these measurements were compared with ECETOC TRA model version 3.1 predictions. In this study, five exposure scenarios were selected, namely 'use in a closed batch process' (PROC 4), 'mixing or blending in a partly open batch process' (PROC 5), 'rolling' (PROC 10), 'immersion' (PROC 13), and 'stirring' (PROC 19). These PROCs stem from the descriptors that Registration, Evaluation and Authorization of Chemicals has established to depict the identified uses of chemical substances. These exposure scenarios were selected mainly because little or no data are available for these situations, or ECETOC TRA is likely to underestimate exposure for these situations. Experiments were performed by volunteers for the selected exposure scenarios, in which tasks were performed aiming to represent real workplace situations. In total 70 experiments were performed, during which 70 dermal exposure measurements (5 volunteers × 2 repeats × 7 scenarios) and 32 inhalation exposure measurements (4 volunteers × 2 repeats × 4 scenarios) were collected. Two formulations were used, namely pure Tinopal SWN powder (solid product, a fluorescent tracer) and 0.5% Tinopal SWN dissolved in 1,2-dichloroethane (1,2-DCE). DCE is considered a moderate volatile liquid. For exposure scenarios using the liquid formulation, both inhalation and dermal measurements were performed, while for exposure scenarios using the pure powder only dermal exposure measurements were performed. In addition, photographs were taken under ultraviolet light to qualitatively assess exposure patterns on hands and body. Volunteers repeatedly performed a selection of tasks under standardized conditions in a test chamber for each exposure scenario. Results show that ECETOC TRA overestimated dermal hand exposure for all PROCs included in the study, and was considered to be conservative. Additionally, ECETOC TRA overestimated inhalation exposure for closed and partially closed processes, but underestimated inhalation exposure for rolling and handling of immersed objects. Qualitative assessment of the hands and body showed mainly the hands were exposed for tasks involving closed and partially closed processes and when handling of immersed objects. Exposure to other body segments were also observed for rolling and stirring. In conclusion, this study gave insights into dermal and inhalation exposure levels during selected task scenarios, and showed that ECETOC TRA is conservative when dermal exposure is estimated. Inhalation exposure estimates for PROCs 10 and 13 tasks with the moderate volatility liquid were underestimated in this study. It may be therefore necessary to re-evaluate base model predictions for these scenarios when medium fugacity liquids are involved.


Assuntos
Substâncias Perigosas , Indústrias , Exposição Ocupacional , Mãos , Substâncias Perigosas/análise , Humanos , Exposição por Inalação , Medição de Risco
3.
Ann Work Expo Health ; 64(1): 55-70, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785203

RESUMO

There is a principal need for more precise methodology with regard to the determination of occupational dermal exposure. The goal of the Systematic analysis of Dermal Exposure to hazardous chemical Agents at the workplace project was therefore to generate scientific knowledge to improve and standardize measurement methods for dermal exposure to chemicals at the workplace. In addition, the comparability of different measurement methods was investigated. Different methods (body sampling by means of coveralls and patches, hand sampling by means of gloves and washing, and head sampling by means of headbands and wiping) were compared. Volunteers repeatedly performed a selection of tasks under standardized conditions in test chambers to increase the reproducibility and decrease variability. The selected tasks were pouring, rolling, spraying, and handling of objects immersed in liquid formulations, as well as dumping and handling objects contaminated with powder. For the chemical analysis, the surrogate test substance Tinopal SWN was analyzed by means of a high-performance liquid chromatographic method using a fluorescence detector. Tinopal SWN was either applied as a solid product in its pure form, or as a low and high viscosity liquid containing Tinopal SWN in dissolved form. To compare the sampling methods with patches and coveralls, the exposure values as measured on the patches were extrapolated to the surface areas of the respective parts of the coverall. Based on this extrapolation approach, using the patch method resulted in somewhat higher exposure values compared to using a coverall for all exposure situations, but the differences were only statistically significant in case of the liquid exposure situations. Using gloves resulted in significantly higher exposure values compared to hand wash for handling immersed objects, rolling, and handling contaminated objects, and slightly higher (not significant) exposure values during pouring and spraying. In the same context, applying wipe sampling resulted in higher exposure values than using a headband, which was at least partly due to extrapolation of the wipe results to the surface area of the headband. No 'golden standard' with regard to a preferred measurement method for dermal exposure could be identified from the methods as investigated in the current study.


Assuntos
Luvas Protetoras , Substâncias Perigosas , Exposição Ocupacional , Manejo de Espécimes/métodos , Mãos , Substâncias Perigosas/análise , Humanos , Exposição Ocupacional/análise , Reprodutibilidade dos Testes , Pele
4.
Pest Manag Sci ; 74(12): 2858-2863, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29781246

RESUMO

BACKGROUND: In the present study, the rate of dermal transfer of pesticides to agricultural workers occurring via contact with sprayed hard surfaces was investigated. Cotton gloves were used as dosimeters to collect residues from hard surfaces contaminated by pesticides in greenhouses. Dosimeters, either dry or moistened, were in contact with wood, metal and plastic surfaces that had previously been sprayed. The experimental approach applied mimicked typical hand contact. Moistened cotton gloves were used to simulate hand moisture from dew/condensation or rainfall. The effect of total duration of contact on the final hand exposure via transfer was investigated. RESULTS: The higher duration contact tested (50 s) resulted in higher transfer rates for metal and plastic surfaces; no such effect was noted in the case of the wood surface. The pesticide amount transferred from the metal and plastic surfaces to wet gloves was greater than that transferred to dry gloves. Such a trend was not observed for the wood surface. Transfer rates varied from 0.46 to 77.62% and from 0.17 to 16.90% for wet and dry samples, respectively. CONCLUSION: The current study has generated new data to quantify the proportion of pesticide deposits dislodged from three different non-crop surfaces when in contact with dry or wet gloves. © 2018 Crown copyright. Pest Management Science © 2018 Society of Chemical Industry.


Assuntos
Fazendeiros , Exposição Ocupacional/análise , Resíduos de Praguicidas/metabolismo , Pele/metabolismo , Humanos , Pressão , Propriedades de Superfície
5.
Sci Total Environ ; 596-597: 178-186, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432907

RESUMO

A dislodgeable foliar residue study was conducted in greenhouse pepper and tomato on the island of Crete, Greece, following the spray application of an SC insecticide (with active substance (a.s.) tebufenozide) and an EC fungicide (a.s. bupirimate). Furthermore, for the assessment of worker exposure to pesticides - as a result of re-entering the treated crops - a worker dermal exposure study was carried out during the tasks of tying or pruning, which allowed the transfer coefficient values for the specific tasks to be determined. Pesticide residues were analysed with an in house developed and fully validated HPLC-ESI/MS analytical method. The results from the study resulted in transfer coefficient values which were in agreement with current EFSA guideline values in most of the cases with the exception of bupirimate in a tomato greenhouse. In that case, high potential dermal exposure and low dislodgeable foliar residue values were observed, which is thought to be due to the moist leaves collected during sampling and monitoring, which led to greater than expected transfer coefficient values.

6.
Sci Total Environ ; 479-480: 132-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561292

RESUMO

The objective of this work was to generate spray drift data from pesticide application in the field comparing spray drift from traditional equipment with emerging, anti-drift technologies. The applications were carried out in the Kopais area in central Greece. Currently few data exist as regards to pesticide spray drift in Southern European conditions. This work details the data for ground and airborne deposition of spray drift using the methodology developed in the UK by the Food and Environment Research Agency (FERA). Three trials were performed in two days using sunset yellow dye which deposited on dosimeters placed at specific distances from the edge of the sprayer boom. The application was carried out with a tractor mounted boom sprayer, which was of local manufacture, as were the nozzles of Trial I, being flat fan brass nozzles. For Trials II and III anti-drift nozzles were used. The boom sprayers were used with the settings as employed by the farmers for the routine pesticide applications. The results of this work indicate that drift was significantly reduced when anti-drift nozzles were utilized.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Modelos Químicos , Praguicidas/análise , Monitoramento Ambiental , Grécia , Projetos Piloto
7.
Sci Total Environ ; 470-471: 282-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140699

RESUMO

In the present study the dermal and the inhalation exposure of five operators during fungicide applications in vineyards were determined. The produced exposure datasets can be used as surrogate for the estimation of the actual and the potential dermal as well as inhalation operator exposure levels for this application scenario. The dermal exposure was measured using the whole body dosimetry method while the inhalation exposure with the use of personal air sampling devices with XAD tubes located on the operator's breathing zone. Ten field trials were carried out by 5 different operators using a tractor assisted hand-held lance with spray gun at the Tanagra region of Viotia, Greece. An in-house GC-ECD analytical method was developed and validated for the determination of penconazole, which was the active substance (a.s.) of the fungicide formulation used in field trials. The mean recovery of field-fortified samples was 81%. The operator exposure results showed expected variability and were compared to those derived from the German model for prediction of operator exposure. The comparison of the 75th percentile values for an operator wearing personal protection equipment has shown that the measured levels were 2.2 times lower than those estimated by the German model. The levels of actual dermal exposure ranged from 2 to 19 mg/kg a.s. applied. The protection provided by the two types of coveralls was evaluated and in comparison to the existing reduction factors used for other types of PPE (coveralls) was found satisfactory for the operator under the conditions of the specific applications.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Fungicidas Industriais/análise , Triazóis/análise , Agricultura , Exposição Ambiental/estatística & dados numéricos , Grécia , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Vinho
8.
Int J Mol Sci ; 9(5): 906-913, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19325792

RESUMO

A simple and effective analytical procedure was developed for the determination of fenthion residues in human serum samples. The sample treatment was performed using the headspace solid-phase micro extraction with polyacrylate fiber, which has the advantage to require low amount of serum (1 mL) without tedious pre-treatment. The quantification of fenthion was carried out by gas chromatography-mass spectrometry and the recoveries ranged from 79 to 104% at two spiking levels for 6 replicates. Detection and quantification limits were calculated as 1.51 and 4.54 ng/mL of serum respectively. Two fenthion metabolites fenoxon and fenthion-sulfoxide were also identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...