Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12503-12511, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688475

RESUMO

In recent years, liquid metal catalysts have emerged as a compelling choice for the controllable, large-scale, and high-quality synthesis of two-dimensional materials. At present, there is little mechanistic understanding of the intricate catalytic process, though, of its governing factors or what renders it superior to growth at the corresponding solid catalysts. Here, we report on a combined experimental and computational study of the kinetics of graphene growth during chemical vapor deposition on a liquid copper catalyst. By monitoring the growing graphene flakes in real time using in situ radiation-mode optical microscopy, we explore the growth morphology and kinetics over a wide range of CH4-to-H2 pressure ratios and deposition temperatures. Constant growth rates of the flakes' radius indicate a growth mode limited by precursor attachment, whereas methane-flux-dependent flake shapes point to limited precursor availability. Large-scale free energy simulations enabled by an efficient machine-learning moment tensor potential trained to density functional theory data provide quantitative barriers for key atomic-scale growth processes. The wealth of experimental and theoretical data can be consistently combined into a microkinetic model that reveals mixed growth kinetics that, in contrast to the situation at solid Cu, is partly controlled by precursor attachment alongside precursor availability. Key mechanistic aspects that directly point toward the improved graphene quality are a largely suppressed carbon dimer attachment due to the facile incorporation of this precursor species into the liquid surface and a low-barrier ring-opening process that self-heals 5-membered rings resulting from remaining dimer attachments.

2.
Materials (Basel) ; 16(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37176409

RESUMO

The very serious problem of temperature and humidity regulation, especially for small and medium-sized museums, galleries, and private collections, can be mitigated by the introduction of novel materials that are easily applicable and of low cost. Within this study, archive boxes with innovative technology are proposed as "smart" boxes that can be used for storage and transportation, in combination with a nanocomposite material consisting of polyvinyl alcohol (PVA) and graphene oxide (GO). The synthesis and characterization of the PVA/GO structure with SEM, Raman, AFM, XRD, Optical Microscopy, and profilometry are fully discussed. It is shown that the composite material can be integrated into the archive box either as a stand-alone film or attached onto fitting carriers, for example, those made of corrugated board. By applying the PVA/GO membrane this way, even with strong daily temperature fluctuations of ΔT = ±24.1 °C, strong external humidity fluctuations can be reduced by -87% inside the box. Furthermore, these humidity regulators were examined as Volatile Organic Compounds (VOCs) adsorbers since gas pollutants like formic acid, formaldehyde, acetic acid, and acetaldehyde are known to exist in museums and induce damages in the displayed or stored items. High rates of VOC adsorption have been measured, with the highest ones corresponding to formic acid (521% weight increase) and formaldehyde (223% weight increase).

4.
ACS Nano ; 15(6): 9638-9648, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060320

RESUMO

The synthesis of large, defect-free two-dimensional materials (2DMs) such as graphene is a major challenge toward industrial applications. Chemical vapor deposition (CVD) on liquid metal catalysts (LMCats) is a recently developed process for the fast synthesis of high-quality single crystals of 2DMs. However, up to now, the lack of in situ techniques enabling direct feedback on the growth has limited our understanding of the process dynamics and primarily led to empirical growth recipes. Thus, an in situ multiscale monitoring of the 2DMs structure, coupled with a real-time control of the growth parameters, is necessary for efficient synthesis. Here we report real-time monitoring of graphene growth on liquid copper (at 1370 K under atmospheric pressure CVD conditions) via four complementary in situ methods: synchrotron X-ray diffraction and reflectivity, Raman spectroscopy, and radiation-mode optical microscopy. This has allowed us to control graphene growth parameters such as shape, dispersion, and the hexagonal supra-organization with very high accuracy. Furthermore, the switch from continuous polycrystalline film to the growth of millimeter-sized defect-free single crystals could also be accomplished. The presented results have far-reaching consequences for studying and tailoring 2D material formation processes on LMCats under CVD growth conditions. Finally, the experimental observations are supported by multiscale modeling that has thrown light into the underlying mechanisms of graphene growth.

5.
Nanoscale ; 13(6): 3346-3373, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555274

RESUMO

2D materials (2DMs) have now been established as unique and attractive alternatives to replace current technological materials in a number of applications. Chemical vapour deposition (CVD), is undoubtedly the most renowned technique for thin film synthesis and meets all requirements for automated large-scale production of 2DMs. Currently most CVD methods employ solid metal catalysts (SMCat) for the growth of 2DMs however their use has been found to induce structural defects such as wrinkles, fissures, and grain boundaries among others. On the other hand, liquid metal catalysts (LMCat), constitute a possible alternative for the production of defect-free 2DMs albeit with a small temperature penalty. This review is a comprehensive report of past attempts to employ LMCat for the production of 2DMs with emphasis on graphene growth. Special attention is paid to the underlying mechanisms that govern crystal growth and/or grain consolidation and film coverage. Finally, the advent of online metrology which is particularly effective for monitoring the chemical processes under LMCat conditions is also reviewed and certain directions for future development are drawn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...