Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 618, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866820

RESUMO

Understanding building morphology is crucial for accurately simulating interactions between urban structures and hydroclimate dynamics. Despite significant efforts to generate detailed global building morphology datasets, there is a lack of practical solutions using publicly accessible resources. In this work, we present GLAMOUR, a dataset derived from open-source Sentinel imagery that captures the average building height and footprint at a resolution of 0.0009° across urbanized areas worldwide. Validated in 18 cities, GLAMOUR exhibits superior accuracy with median root mean square errors of 7.5 m and 0.14 for building height and footprint estimations, indicating better overall performance against existing published datasets. The GLAMOUR dataset provides essential morphological information of 3D building structures and can be integrated with other datasets and tools for a wide range of applications including 3D building model generation and urban morphometric parameter derivation. These extended applications enable refined hydroclimate simulation and hazard assessment on a broader scale and offer valuable insights for researchers and policymakers in building sustainable and resilient urban environments prepared for future climate adaptation.

2.
UCL Open Environ ; 5: e061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435119

RESUMO

The coronavirus (Covid-19) pandemic has affected not only populations around the world but also the environment and natural resources. Lockdowns and restricted lifestyles have had wide-ranging impacts on the environment (e.g., air quality in cities). Although hygiene and disinfection procedures and precautions are effective ways to protect people from Covid-19, they have significant consequences for water usage and resources especially given the increasing impacts of climate change on rainfall patterns, water use and resources. Climate change and public health issues may compound one another, and so we used a drivers, pressures, state, impact, response framework (not previously used to examine the actual and potential impacts of Covid-19 and climate change on water consumption and resources) to scope the main factors that may interact to affect water use and resources (in the form of reservoirs) using evidence from Istanbul, Türkiye, with some discussion of the comparative situation elsewhere. We modified initial views on the framework to account for the regional, city and community level experiences. We note that water consumption in Istanbul has been increasing over the last two decades (except in times of very low rainfall/drought); that there were increases in water consumption in the early stages of the Covid-19 pandemic; and, despite some increase in rainfall, water levels in reservoirs appeared to decrease during lockdowns (for a range of reasons). Through a new simple way of visualising the data, we also noted that a low resource capacity might be recurring every 6 or 7 years in Istanbul (a similar finding to Thames Reservoir in London). We made no attempt in this paper to quantify the relative contribution that climate change, population growth, etc., are making to water consumption and reservoir levels as we focused on looking at those social, environmental and economic factors that appear to play a role in potential water stress and on developing a drivers, pressures, state, impact, response framework for policy and adaptive management options for Istanbul and other large complex conurbations. If there are periodic water resource issues and temperatures rise as expected in climate projections with an accompanying increase in the duration of hot spells, the subsequent additional stress on water systems might make managing future public health emergencies, such as a pandemic, even more difficult.

3.
Nature ; 609(7927): 517-522, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104558

RESUMO

Arctic sea ice is diminishing with climate warming1 at a rate unmatched for at least 1,000 years2. As the receding ice pack raises commercial interest in the Arctic3, it has become more variable and mobile4, which increases safety risks to maritime users5. Satellite observations of sea-ice thickness are currently unavailable during the crucial melt period from May to September, when they would be most valuable for applications such as seasonal forecasting6, owing to major challenges in the processing of altimetry data7. Here we use deep learning and numerical simulations of the CryoSat-2 radar altimeter response to overcome these challenges and generate a pan-Arctic sea-ice thickness dataset for the Arctic melt period. CryoSat-2 observations capture the spatial and the temporal patterns of ice melting rates recorded by independent sensors and match the time series of sea-ice volume modelled by the Pan-Arctic Ice Ocean Modelling and Assimilation System reanalysis8. Between 2011 and 2020, Arctic sea-ice thickness was 1.87 ± 0.10 m at the start of the melting season in May and 0.82 ± 0.11 m by the end of the melting season in August. Our year-round sea-ice thickness record unlocks opportunities for understanding Arctic climate feedbacks on different timescales. For instance, sea-ice volume observations from the early summer may extend the lead time of skilful August-October sea-ice forecasts by several months, at the peak of the Arctic shipping season.

4.
Cryosphere ; 10(3): 1161-1179, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-32818051

RESUMO

We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new dataset are presented and discussed, especially in relation to calculations of atmospheric form drag.

5.
Philos Trans A Math Phys Eng Sci ; 373(2052)2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26347538

RESUMO

We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 026112, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19792205

RESUMO

In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...