Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(4): 100746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447791

RESUMO

Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.


Assuntos
Doença de Huntington , Mitocôndrias , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Mitocôndrias/metabolismo , Humanos , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosforilação Oxidativa , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Linhagem Celular , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Espectrometria de Massas , Perfil de Ribossomos
2.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549915

RESUMO

Long-term memory formation requires anterograde transport of proteins from the soma of a neuron to its distal synaptic terminals. This allows new synaptic connections to be grown and existing ones remodeled. However, we do not yet know which proteins are transported to synapses in response to activity and temporal regulation. Here, using quantitative mass spectrometry, we have profiled anterograde protein cargos of a learning-regulated molecular motor protein kinesin [Aplysia kinesin heavy chain 1 (ApKHC1)] following short-term sensitization (STS) and long-term sensitization (LTS) in Aplysia californica Our results reveal enrichment of specific proteins associated with ApKHC1 following both STS and LTS, as well as temporal changes within 1 and 3 h of LTS training. A significant number of proteins enriched in the ApKHC1 complex participate in synaptic function, and, while some are ubiquitously enriched across training conditions, a few are enriched in response to specific training. For instance, factors aiding new synapse formation, such as synaptotagmin-1, dynamin-1, and calmodulin, are differentially enriched in anterograde complexes 1 h after LTS but are depleted 3 h after LTS. Proteins including gelsolin-like protein 2 and sec23A/sec24A, which function in actin filament stabilization and vesicle transport, respectively, are enriched in cargos 3 h after LTS. These results establish that the composition of anterograde transport complexes undergo experience-dependent specific changes and illuminate dynamic changes in the communication between soma and synapse during learning.


Assuntos
Aplysia , Cinesinas , Animais , Cinesinas/metabolismo , Aprendizagem/fisiologia , Neurônios , Sinapses/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(38): e2204229119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095217

RESUMO

Forgetting is an essential component of the brain's memory management system, providing a balance to memory formation processes by removing unused or unwanted memories, or by suppressing their expression. However, the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the memory suppressor gene, sickie, functions in a single dopamine neuron (DAn) by supporting the process of active forgetting in Drosophila. RNAi knockdown (KD) of sickie impairs forgetting by reducing the Ca2+ influx and DA release from the DAn that promotes forgetting. Coimmunoprecipitation/mass spectrometry analyses identified cytoskeletal and presynaptic active zone (AZ) proteins as candidates that physically interact with Sickie, and a focused RNAi screen of the candidates showed that Bruchpilot (Brp)-a presynaptic AZ protein that regulates calcium channel clustering and neurotransmitter release-impairs active forgetting like sickie KD. In addition, overexpression of brp rescued the impaired forgetting of sickie KD, providing evidence that they function in the same process. Moreover, we show that sickie KD in the DAn reduces the abundance and size of AZ markers but increases their number, suggesting that Sickie controls DAn activity for forgetting by modulating the presynaptic AZ structure. Our results identify a molecular and circuit mechanism for normal levels of active forgetting and reveal a surprising role of Sickie in maintaining presynaptic AZ structure for neurotransmitter release.


Assuntos
Dopamina , Proteínas de Drosophila , Drosophila melanogaster , Memória , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica
4.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858434

RESUMO

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Assuntos
Acetamidas , Antivirais , Isoindóis , Vírus Lassa , Fatores de Terminação de Peptídeos , Piperidonas , RNA Polimerase Dependente de RNA , Proteínas Virais , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Febre Lassa/tratamento farmacológico , Vírus Lassa/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteoma , Proteômica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
5.
Cell Rep ; 38(12): 110544, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320713

RESUMO

Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome in the cytoplasm of host cells, where cellular factors can antagonize or facilitate the virus life cycle. Here we leverage proximity proteomics and conduct a small interfering RNA (siRNA) screen to define the functional interactome of EBOV polymerase. As a proof of principle, we validate two cellular mRNA decay factors from 35 identified host factors: eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1) and up-frameshift protein 1 (UPF1). Our data suggest that EBOV can subvert restrictions of cellular mRNA decay and repurpose GSPT1 and UPF1 to promote viral replication. Treating EBOV-infected human hepatocytes with a drug candidate that targets GSPT1 for degradation significantly reduces viral RNA load and particle production. Our work demonstrates the utility of proximity proteomics to capture the functional host interactome of the EBOV polymerase and to illuminate host-dependent regulation of viral RNA synthesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ebolavirus/genética , Interações Hospedeiro-Patógeno , Humanos , Proteômica , RNA Helicases/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Transativadores , Replicação Viral
6.
Biol Psychiatry ; 90(5): 295-306, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33840455

RESUMO

BACKGROUND: Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS: We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS: We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS: Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.


Assuntos
Transtorno do Espectro Autista , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Células Piramidais/patologia , Animais , Camundongos , Mutação/genética , Quinases Dyrk
7.
Mol Cell ; 81(1): 104-114.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33259811

RESUMO

Aborted translation produces large ribosomal subunits obstructed with tRNA-linked nascent chains, which are substrates of ribosome-associated quality control (RQC). Bacterial RqcH, a widely conserved RQC factor, senses the obstruction and recruits tRNAAla(UGC) to modify nascent-chain C termini with a polyalanine degron. However, how RqcH and its eukaryotic homologs (Rqc2 and NEMF), despite their relatively simple architecture, synthesize such C-terminal tails in the absence of a small ribosomal subunit and mRNA has remained unknown. Here, we present cryoelectron microscopy (cryo-EM) structures of Bacillus subtilis RQC complexes representing different Ala tail synthesis steps. The structures explain how tRNAAla is selected via anticodon reading during recruitment to the A-site and uncover striking hinge-like movements in RqcH leading tRNAAla into a hybrid A/P-state associated with peptidyl-transfer. Finally, we provide structural, biochemical, and molecular genetic evidence identifying the Hsp15 homolog (encoded by rqcP) as a novel RQC component that completes the cycle by stabilizing the P-site tRNA conformation. Ala tailing thus follows mechanistic principles surprisingly similar to canonical translation elongation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA Bacteriano/metabolismo , RNA de Transferência de Alanina/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , RNA Bacteriano/genética , RNA de Transferência de Alanina/genética
8.
Sci Adv ; 6(18): eaaz7001, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426479

RESUMO

The therapeutic effects of l-3,4-dihydroxyphenylalanine (l-DOPA) in patients with Parkinson's disease (PD) severely diminishes with the onset of abnormal involuntary movement, l-DOPA-induced dyskinesia (LID). However, the molecular mechanisms that promote LID remain unclear. Here, we demonstrated that RasGRP1 [(guanine nucleotide exchange factor (GEF)] controls the development of LID. l-DOPA treatment rapidly up-regulated RasGRP1 in the striatum of mouse and macaque model of PD. The lack of RasGRP1 in mice (RasGRP1-/- ) dramatically diminished LID without interfering with the therapeutic effects of l-DOPA. Besides acting as a GEF for Ras homolog enriched in the brain (Rheb), the activator of the mammalian target of rapamycin kinase (mTOR), RasGRP1 promotes l-DOPA-induced extracellular signal-regulated kinase (ERK) and the mTOR signaling in the striatum. High-resolution tandem mass spectrometry analysis revealed multiple RasGRP1 downstream targets linked to LID vulnerability. Collectively, the study demonstrated that RasGRP1 is a critical striatal regulator of LID.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Corpo Estriado , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Levodopa/efeitos adversos , Mamíferos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Serina-Treonina Quinases TOR
9.
Oncotarget ; 10(55): 5713-5723, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31620246

RESUMO

Polyamines spermidine and spermine, and their diamine precursor putrescine, are essential for normal cellular functions in both pro- and eukaryotes. Cellular polyamine levels are regulated by biosynthesis, degradation and transport. Transport of dietary and luminal bacterial polyamines in gastrointestinal (GI) tissues plays a significant role in tissue polyamine homeostasis. We have reported that caveolin-1 play an inhibitory role in polyamine uptake in GI tissues. We investigated the mechanism of caveolin-1-regulated polyamine transport. We found that glutathione S-transferase Π(GSTΠ) was secreted from caveolin-1 knockdown cells and stimulated spermidine transport in human colon-derived HCT116 cells. GSTΠ secreted in the medium increased S-glutathionylated protein level in the plasma membrane fraction. Proteomic analysis revealed that actin was S-glutathionylated by GSTΠ. Immunofluorescence microscopy demonstrated that actin filaments around plasma membrane were S-glutathionylated in caveolin-1 knockdown cells. Inhibition of actin remodeling by jasplakinolide caused a decrease in polyamine uptake activity. These data support a model in which caveolin-1 negatively regulates polyamine uptake by inhibiting GSTΠ secretion, which stimulates actin remodeling and endocytosis.

10.
BMC Bioinformatics ; 20(1): 398, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315557

RESUMO

BACKGROUND: Utilization of quantitative proteomics data on the network level is still a challenge in proteomics data analysis. Currently existing models use sophisticated, sometimes hard to implement analysis techniques. Our aim was to generate a relatively simple strategy for quantitative proteomics data analysis in order to utilize as much of the data generated in a proteomics experiment as possible. RESULTS: In this study, we applied label-free proteomics, and generated a network model utilizing both qualitative, and quantitative data, in order to examine the early host response to Human Immunodeficiency Virus type 1 (HIV-1). A weighted network model was generated based on the amount of proteins measured by mass spectrometry, and analysis of weighted networks and functional sub-networks revealed upregulation of proteins involved in translation, transcription, and DNA condensation in the early phase of the viral life-cycle. CONCLUSION: A relatively simple strategy for network analysis was created and applied to examine the effect of HIV-1 on host cellular proteome. We believe that our model may prove beneficial in creating algorithms, allowing for both quantitative and qualitative studies of proteome change in various biological and pathological processes by quantitative mass spectrometry.


Assuntos
HIV-1/fisiologia , Proteômica/métodos , HIV-1/genética , Humanos , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Transdução Genética
11.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155236

RESUMO

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Assuntos
Alanina/metabolismo , Bacillus subtilis/metabolismo , Células Procarióticas/metabolismo , Proteólise , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
J Proteomics ; 177: 11-20, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448054

RESUMO

The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor and member of the immunoglobulin superfamily. RAGE is constitutively expressed in the distal lung where it co-localizes with the alveolar epithelium; RAGE expression is otherwise minimal or absent, except with disease. This suggests RAGE plays a role in lung physiology and pathology. We used proteomics to identify and characterize the effects of RAGE on rat alveolar epithelial (R3/1) cells. LC-MS/MS identified 177 differentially expressed proteins and the PANTHER Classification System further segregated proteins. Proteins involved in gene transcription (RNA and mRNA splicing, mRNA processing) and transport (protein, intracellular protein) were overrepresented; genes involved in a response to stimulus were underrepresented. Immune system processes and response to stimuli were downregulated with RAGE knockdown. Western blot confirmed RAGE-dependent changes in protein expression for NFκB and NLRP3 that was functionally supported by a reduction in IL-1ß and phosphorylated p65. We also assessed RAGE's effect on redox regulation and report that RAGE knockdown attenuated oxidant production, decreased protein oxidation, and increased reduced thiol pools. Collectively the data suggest that RAGE is a critical regulator of epithelial cell response and has implications for our understanding of lung disease, specifically acute lung injury. SIGNIFICANCE STATEMENT: In the present study, we undertook the first proteomic evaluation of RAGE-dependent processes in alveolar epithelial cells. The alveolar epithelium is a primary target during acute lung injury, and our data support a role for RAGE in gene transcription, protein transport, and response to stimuli. More over our data suggest that RAGE is a critical driver of redox regulation in the alveolar epithelium. The conclusions of the present work assist to unravel the molecular events that underlie the function of RAGE in alveolar epithelial cells and have implications for our understanding of RAGE signaling during lung injury. Our study was the first proteomic comparison showing the effects of RAGE activation from alveolar epithelial cells that constitutively express RAGE and these results can affect a wide field of lung biology, pulmonary therapeutics, and proteomics.


Assuntos
Células Epiteliais Alveolares/química , Proteoma/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Animais , Células Cultivadas , Cromatografia Líquida , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Espectrometria de Massas em Tandem , Transcrição Gênica/efeitos dos fármacos
13.
Toxicol Appl Pharmacol ; 289(2): 155-62, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26435215

RESUMO

Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 µM MG from a prodan-HSA complex (75 µM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients.


Assuntos
Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Processamento de Proteína Pós-Traducional , Proteômica , Aldeído Pirúvico/sangue , Arginina , Sítios de Ligação , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Mapeamento de Peptídeos , Ligação Proteica , Carbonilação Proteica , Proteômica/métodos , Albumina Sérica/metabolismo , Albumina Sérica Humana , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Arch Biochem Biophys ; 568: 16-27, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25602701

RESUMO

The flight muscles (DLM1) of the Hawkmoth, Manduca sexta are synchronous, requiring a neural spike for each contraction. Stress/strain curves of skinned DLM1 showed hysteresis indicating the presence of titin-like elastic proteins. Projectin and kettin are titin-like proteins previously identified in Lethocerus and Drosophila flight muscles. Analysis of Manduca muscles with 1% SDS-agarose gels and western blots showed two bands near 1 MDa that cross-reacted with antibodies to Drosophila projectin. Antibodies to Drosophila kettin cross-reacted to bands at ∼500 and ∼700 kDa, but also to bands at ∼1.6 and ∼2.1 MDa, that had not been previously observed in insect flight muscles. Mass spectrometry identified the 2.1 MDa protein as a product of the Sallimus (sls) gene. Analysis of the gene sequence showed that all 4 putative Sallimus and kettin isoforms could be explained as products of alternative splicing of the single sls gene. Both projectin and sallimus isoforms were expressed to higher levels in ventrally located DLM1 subunits, primarily responsible for active work production, as compared to dorsally located subunits, which may act as damped springs. The different expression levels of the 2 projectin isoforms and 4 sallimus/kettin isoforms may be adaptations to the specific requirements of individual muscle subunits.


Assuntos
Conectina/análise , Proteínas de Insetos/análise , Manduca/química , Manduca/genética , Proteínas Musculares/análise , Processamento Alternativo , Sequência de Aminoácidos , Animais , Conectina/genética , Elasticidade , Voo Animal , Proteínas de Insetos/genética , Manduca/fisiologia , Dados de Sequência Molecular , Proteínas Musculares/genética , Músculos/química , Músculos/fisiologia , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Alinhamento de Sequência
15.
PLoS One ; 8(9): e74187, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073201

RESUMO

The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.


Assuntos
Artemia/metabolismo , Ácido Bongcréquico/farmacologia , Farmacorresistência Fúngica , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antibacterianos/farmacologia , Artemia/efeitos dos fármacos , Artemia/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
J Mol Cell Cardiol ; 54: 90-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23220127

RESUMO

Titin-based passive stiffness is post-translationally regulated by several kinases that phosphorylate specific spring elements located within titin's elastic I-band region. Whether titin is phosphorylated by calcium/calmodulin dependent protein kinase II (CaMKII), an important regulator of cardiac function and disease, has not been addressed. The aim of this work was to determine whether CaMKIIδ, the predominant CaMKII isoform in the heart, phosphorylates titin, and to use phosphorylation assays and mass spectrometry to study which of titin's spring elements might be targeted by CaMKIIδ. It was found that CaMKIIδ phosphorylates titin in mouse LV skinned fibers, that the CaMKIIδ sites can be dephosphorylated by protein phosphatase 1 (PP1), and that under baseline conditions, in both intact isolated hearts and skinned myocardium, about half of the CaMKIIδ sites are phosphorylated. Mass spectrometry revealed that both the N2B and PEVK segments are targeted by CaMKIIδ at several conserved serine residues. Whether phosphorylation of titin by CaMKIIδ occurs in vivo, was tested in several conditions using back phosphorylation assays and phospho-specific antibodies to CaMKIIδ sites. Reperfusion following global ischemia increased the phosphorylation level of CaMKIIδ sites on titin and this effect was abolished by the CaMKII inhibitor KN-93. No changes in the phosphorylation level of the PEVK element were found suggesting that the increased phosphorylation level of titin in IR (ischemia reperfusion) might be due to phosphorylation of the N2B element. The findings of these studies show for the first time that titin can be phosphoryalated by CaMKIIδ, both in vitro and in vivo, and that titin's molecular spring region that determines diastolic stiffness is a target of CaMKIIδ.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sequência Conservada , Ventrículos do Coração/patologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína
17.
Mol Cell Proteomics ; 11(6): M111.015032, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22207702

RESUMO

Nrf2 gene encodes a transcription factor that regulates the expression of a cluster of antioxidant and detoxification genes. Recent works from our laboratory indicate that oxidative stress causes rapid de novo synthesis of Nrf2 protein. We have found that 5' Untranslated Region (5'UTR) of Nrf2 allows the mRNA to undergo an Internal Ribosomal Entry Site (IRES) mediated protein translation. Using liquid chromatography tandem MS, we have discovered that La/SSB protein bound to Nrf2 5'UTR in response to oxidative stress. In vitro RNA binding and in vivo ribonucleoprotein immunoprecipitation showed H(2)O(2) dose and time dependent increases of La/SSB binding to Nrf2 5'UTR. La/SSB protein translocated from the nuclei to cytoplasm and distributed in the perinuclear space in cells treated with H(2)O(2). Isolation of ribosomal fractions indicated that oxidants caused an association of La/SSB with ribosomes. Physical interaction of La/SSB with representative proteins from the small or large subunits of ribosomes was found to increase in cells responding to H(2)O(2) treatment. Knocking down La/SSB gene with siRNA prevented Nrf2 protein elevation or Nrf2 5'UTR activation by oxidants. In contrast, overexpression of La/SSB gene was able to enhance Nrf2 5'UTR activation and Nrf2 protein increase. Our data suggest that oxidants cause nuclear export of La/SSB protein and subsequent association of La/SSB with Nrf2 5'UTR and ribosomes. These events contribute to de novo Nrf2 protein translation because of oxidative stress.


Assuntos
Autoantígenos/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes/farmacologia , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Autoantígenos/fisiologia , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Dados de Sequência Molecular , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Fosfoproteínas/fisiologia , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Transcrição Gênica , Proteína Exportina 1
18.
Chem Biol Interact ; 192(1-2): 122-8, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20934417

RESUMO

Methylglyoxal (MG) is a biologically reactive byproduct of glucose metabolism, levels of which increase in diabetes. MG modification of protein generates neutral hydroimidazolone adducts on arginine residues which can alter functional active sites. We investigated the site-specificity of MG adduction to human serum albumin (HSA) using multiple reaction monitoring (MRM) of 13 MG-modified tryptic peptides, each containing an internal arginine. Seven new sites for MG modification (R257>R209>R222>R81>R485>R472>R10) are described. Analysis of MG-treated HSA showed substantial R257 and R410 modification, with MG-modified R257 (at 100µM MG) in drug site I causing significant inhibition of prostaglandin catalysis. The MG hydroimidazolone (MG-H1) adduct was modeled at R257, and molecular dynamics simulations and affinity docking revealed a decrease of 12.8-16.5kcal/mol (S and R isomers, respectively) for warfarin binding in drug site I. Taken together, these results suggest that R257 is a likely site for MG modification in vivo, which may have functional consequences for prostaglandin metabolism and drug bioavailability.


Assuntos
Prostaglandinas/metabolismo , Aldeído Pirúvico/metabolismo , Albumina Sérica/metabolismo , Varfarina/metabolismo , Domínio Catalítico , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
19.
Appl Environ Microbiol ; 77(4): 1221-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169425

RESUMO

Assessing bacterial behavior in microgravity is important for risk assessment and prevention of infectious diseases during spaceflight missions. Furthermore, this research field allows the unveiling of novel connections between low-fluid-shear regions encountered by pathogens during their natural infection process and bacterial virulence. This study is the first to characterize the spaceflight-induced global transcriptional and proteomic responses of Pseudomonas aeruginosa, an opportunistic pathogen that is present in the space habitat. P. aeruginosa responded to spaceflight conditions through differential regulation of 167 genes and 28 proteins, with Hfq as a global transcriptional regulator. Since Hfq was also differentially regulated in spaceflight-grown Salmonella enterica serovar Typhimurium, Hfq represents the first spaceflight-induced regulator acting across bacterial species. The major P. aeruginosa virulence-related genes induced in spaceflight were the lecA and lecB lectin genes and the gene for rhamnosyltransferase (rhlA), which is involved in rhamnolipid production. The transcriptional response of spaceflight-grown P. aeruginosa was compared with our previous data for this organism grown in microgravity analogue conditions using the rotating wall vessel (RWV) bioreactor. Interesting similarities were observed, including, among others, similarities with regard to Hfq regulation and oxygen metabolism. While RWV-grown P. aeruginosa mainly induced genes involved in microaerophilic metabolism, P. aeruginosa cultured in spaceflight presumably adopted an anaerobic mode of growth, in which denitrification was most prominent. Whether the observed changes in pathogenesis-related gene expression in response to spaceflight culture could lead to an alteration of virulence in P. aeruginosa remains to be determined and will be important for infectious disease risk assessment and prevention, both during spaceflight missions and for the general public.


Assuntos
Fator Proteico 1 do Hospedeiro/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Voo Espacial , Ausência de Peso , Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Desnitrificação , Sistemas Ecológicos Fechados , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Hexosiltransferases/genética , Lectinas/genética , Dados de Sequência Molecular , Oxigênio/metabolismo , Proteômica , Pseudomonas aeruginosa/patogenicidade , Salmonella enterica/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Transcrição Gênica , Virulência/genética , Fatores de Virulência/genética
20.
BMC Biotechnol ; 10: 62, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735851

RESUMO

BACKGROUND: Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. RESULTS: The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin ß-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. CONCLUSION: Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.


Assuntos
Antígenos Glicosídicos Associados a Tumores/biossíntese , Mucina-1/química , N-Acetilgalactosaminiltransferases/metabolismo , Nicotiana/genética , Antígenos Glicosídicos Associados a Tumores/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Engenharia Genética/métodos , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Nicotiana/metabolismo , Transformação Genética , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...