Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 72: 103243, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31445455

RESUMO

There is currently limited scientific evidence linking soil copper and land snails, although these invertebrates are important players in terrestrial ecosystems. In the present study, Cantareus aspersus juveniles, were exposed in two successive phases of 30 days each, to soil spiked with increasing concentrations of copper sulfate. Copper concentrated preferentially and in a dose-dependent manner in the hepatopancreas. In the case of specimens previously exposed to Cu-spiked soils, Cu retention kinetics were independent from the effects of a new exposure event. There was no effect on shell growth, but significant mortality was observed at 60 days. The no observed effect concentration and the lowest observed effect concentration for mortality in snails, were ˜ 41 and 54 mg, respectively, per grams dry weight in the hepatopancreas. The results demonstrate, for the first time, that terrestrial gastropods can accumulate soil Cu autonomously from dietary uptake.


Assuntos
Cobre/farmacocinética , Caramujos/metabolismo , Poluentes do Solo/farmacocinética , Animais , Cobre/toxicidade , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Caramujos/efeitos dos fármacos , Poluentes do Solo/toxicidade
2.
Environ Res ; 152: 141-149, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771568

RESUMO

Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH)2 without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd2+ ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd2+ ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd2+ from sources such as cigarette smoke.


Assuntos
Compostos de Cádmio/toxicidade , Citratos/farmacologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Tensoativos/farmacologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Compostos de Cádmio/química , Hidrolases de Éster Carboxílico/metabolismo , Recuperação e Remediação Ambiental , Ativação Enzimática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/química , Metalotioneína/metabolismo , Óxidos/química , Citrato de Sódio , Poluentes Químicos da Água/química
3.
Exp Ther Med ; 11(2): 553-560, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26893646

RESUMO

In the present study, cobalt oxide (Co3O4) magnetic nanoparticles with block and sphere morphologies were synthesized using various surfactants, and the toxicity of the particles was analyzed by monitoring biomarkers of nanoparticle toxicity in zebrafish. The use of tartarate as a surfactant produced highly crystalline blocks of Co3O4 nanoparticles with pores on the sides, whereas citrate lead to the formation of nanoparticles with a spherical morphology. Co3O4 structure, crystallinity, size and morphology were studied using X-ray diffractogram and field emission scanning electron microscopy. Following an increase in nanoparticle concentration from 1 to 200 ppm, there was a corresponding increase in nitric oxide (NO) generation, induced by both types of nanoparticles [Co3O4-NP-B (block), r=0.953; Co3O4-NP-S (sphere), r=1.140]. Comparative analyses indicated that both types of nanoparticle produced significant stimulation at ≥5 ppm (P<0.05) compared with a control. Upon analyzing the effect of nanoparticle morphology on NO generation, it was observed that Co3O4-NP-S was more effective compared with Co3O4-NP-B (5 and 100 ppm, P<0.05; 200 ppm, P<0.01). Exposure to both types of nanoparticles produced reduction in liver glutathione (GSH) activity with corresponding increase in dose (Co3O4-NP-B, r=-0.359; Co3O4-NP-S, r=-0.429). However, subsequent analyses indicated that Co3O4-NP-B was more potent in inhibiting liver GSH activity compared with Co3O4-NP-S. Co3O4-NP-B proved to be toxic at 5 ppm (P<0.05) and GSH activity was almost completely inhibited at 200 ppm. A similar toxicity was observed with both types of Co3O4-NPs against brain levels of acetylcholinesterase (AChE; Co3O4-NP-B, r=-0.180; Co3O4-NP-S, r=-0.230), indicating the ability of synthesized Co3O4-NPs to cross the blood-brain barrier and produce neuronal toxicity. Co3O4-NP-B showed increased inhibition of brain AChE activity compared with Co3O4-NP-S (1,5, and 10 ppm, P<0.05; 50, 100 and 200 ppm, P<0.01). These results suggested that the morphology of nanoparticle and surface area contribute to toxicity, which may have implications for their biological application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...