Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8322-8330, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567259

RESUMO

Treatments of N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide (HL1) and N-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide carboxamide ligands (HL2) with [Ru(p-cymene)Cl2]2 and [Ru(PPh3)3Cl2] precursors afforded the respective Ru(ii) complexes [Ru(L1)(p-cymene)Cl] (Ru1), [Ru(L2)(p-cymene)Cl] (Ru2), [Ru(L1)(PPh3)2Cl] (Ru3), and [Ru(L2)(PPh3)2Cl] (Ru4). These complexes were characterized by NMR, FT-IR spectroscopies, mass spectrometry, elemental analyses, and crystal X-ray crystallography for Ru2. The molecular structure of complex Ru2 contains one mono-anionic bidentate bound ligand and display pseudo-octahedral piano stool geometry around the Ru(ii) atom. The interactions with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated by spectroscopic techniques. The experimental binding studies suggest that complexes Ru1-Ru4 interact with DNA, primarily through minor groove binding, as supported by molecular docking results. Additionally, these complexes exhibit strong quenching of the fluorescence of tryptophan residues in BSA, displaying static quenching. The in vitro cytotoxicity studies of compounds Ru1-Ru4 were assessed in cancer cell lines (A549, PC-3, HT-29, Caco-2, and HeLa), as well as a non-cancer line (KMST-6). Compounds Ru1 and Ru2 exhibited superior cytotoxicity compared to Ru3 and Ru4. The in vitro cytotoxicity and selectivity of compounds Ru1 and Ru2 against A549, PC-3, and Caco-2 cell lines surpassed that of cisplatin.

2.
Dalton Trans ; 48(36): 13630-13640, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31464305

RESUMO

The chiral synthons (S-)-1-phenyl-N-(pyridine-2-yl)ethylidine)ethanamine (L1), (R-)-1phenyl-N-(pyridine-2-yl)ethylidine))ethanamine (L2) (S)-1-phenyl-N-(pyridine-2-yl methylene) ethanamine (L3), and (R)-1-phenyl-N-(pyridine-2-yl methylene) ethanamine (L4) were synthesized in good yields. Treatments of L1-L4 with NiBr2(DME) and NiCl2 precursor afforded dinuclear complexes [Ni2(L1)4-µ-Br2]NiBr4 (Ni1), [Ni2(L2)4-µ-Br2]NiBr4 (Ni2), [Ni2(L3)4-µBr2]Br2 (Ni3), [Ni2(L4)4-µ-Br2]NiBr4 (Ni4) and [Ni(L4)2Cl2] (Ni5). The identities of the compounds were established using NMR, FT-IR and EPR spectroscopy, mass spectrometry, magnetic moments, elemental analysis and single crystal X-ray crystallography. The dinuclear dibromide nickel complexes dissociate into mononuclear species in the presence of strongly coordinating solvents. Compounds Ni1-Ni5 displayed moderate catalytic activities in the asymmetric transfer hydrogenation (ATH) of ketones, but with low enantiomeric excess (ee%). Both mercury and substoichiometric poisoning tests pointed to the homogeneous nature of the active species with the partial formation of catalytically active Ni(0) nanoparticles. Low resolution mass spectrometry analyses of the intermediates supported a dihydride mechanistic pathway for the transfer of hydrogenation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...