Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887344

RESUMO

Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Oócitos , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Oócitos/metabolismo , Pressão Osmótica
2.
Biol Reprod ; 109(5): 601-617, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669129

RESUMO

Numerous reference genes for use with quantitative reverse transcription polymerase chain reaction (RT-qPCR) have been used for oocytes, eggs, and preimplantation embryos. However, none are actually suitable because of their large variations in expression between developmental stages. To address this, we produced a standardized and merged RNA sequencing (RNAseq) data set by combining multiple publicly available RNAseq data sets that spanned mouse GV oocytes, MII eggs, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos to identify transcripts with essentially constant expression across all stages. Their expression was then measured using RT-qPCR, with which they did not exhibit constant expression but instead revealed a fixed quantitative relationship between measurements by the two techniques. From this, the relative amounts of total messenger RNA at each stage from the GV oocyte through blastocyst stages were calculated. The quantitative relationship between measurements by RNAseq and RT-qPCR was then used to find genes predicted to have constant expression across stages in RT-qPCR. Candidates were assessed by RT-qPCR to confirm constant expression, identifying Hmgb3 and Rb1cc1 or the geometric mean of those plus either Taf1d or Cd320 as suitable reference genes. This work not only identified transcripts with constant expression from mouse GV oocytes to blastocysts, but also determined a general quantitative relationship between expression measured by RNAseq and RT-qPCR across stages that revealed the relative levels of total mRNA at each stage. The standardized and merged RNA data set should also prove useful in determining transcript expression in mouse oocytes, eggs, and embryos.


Assuntos
Transcrição Reversa , Transcriptoma , Camundongos , Animais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Blastocisto/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298298

RESUMO

The PIWI clade of Argonaute proteins is essential for spermatogenesis in all species examined to date. This protein family binds specific classes of small non-coding RNAs known as PIWI-interacting RNAs (piRNAs) which together form piRNA-induced silencing complexes (piRISCs) that are recruited to specific RNA targets through sequence complementarity. These complexes facilitate gene silencing through endonuclease activity and guided recruitment of epigenetic silencing factors. PIWI proteins and piRNAs have been found to play multiple roles in the testis including the maintenance of genomic integrity through transposon silencing and facilitating the turnover of coding RNAs during spermatogenesis. In the present study, we report the first characterization of PIWIL1 in the male domestic cat, a mammalian system predicted to express four PIWI family members. Multiple transcript variants of PIWIL1 were cloned from feline testes cDNA. One isoform shows high homology to PIWIL1 from other mammals, however, the other has characteristics of a "slicer null" isoform, lacking the domain required for endonuclease activity. Expression of PIWIL1 in the male cat appears limited to the testis and correlates with sexual maturity. RNA-immunoprecipitation revealed that feline PIWIL1 binds small RNAs with an average size of 29 nt. Together, these data suggest that the domestic cat has two PIWIL1 isoforms expressed in the mature testis, at least one of which interacts with piRNAs.


Assuntos
RNA de Interação com Piwi , Testículo , Animais , Masculino , Gatos , Testículo/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , RNA Interferente Pequeno/genética , Isoformas de Proteínas/metabolismo , Clonagem Molecular , Endonucleases/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
4.
Zygote ; 30(5): 674-688, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35652653

RESUMO

The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) links the folate cycle that produces one-carbon units with the methionine cycle that converts these into S-adenosylmethionine (SAM), the universal methyl donor for almost all methyltransferases. Previously, MTHFR has been shown to be regulated by phosphorylation, which suppresses its activity. SAM levels have been shown to increase substantially soon after initiation of meiotic maturation of the mouse germinal vesicle (GV) stage oocyte and then decrease back to their original low level in mature second meiotic metaphase (MII) eggs. As MTHFR controls the entry of one-carbon units into the methionine cycle, it is a candidate regulator of the SAM levels in oocytes and eggs. Mthfr transcripts are expressed in mouse oocytes and preimplantation embryos and MTHFR protein is present at each stage. In mature MII eggs, the apparent molecular weight of MTHFR was increased compared with GV oocytes, which we hypothesized was due to increased phosphorylation. The increase in apparent molecular weight was reversed by treatment with lambda protein phosphatase (LPP), indicating that MTHFR is phosphorylated in MII eggs. In contrast, LPP had no effect on MTHFR from GV oocytes, 2-cell embryos, or blastocysts. MTHFR was progressively phosphorylated after initiation of meiotic maturation, reaching maximal levels in MII eggs before decreasing again after egg activation. As phosphorylation suppresses MTHFR activity, it is predicted that MTHFR becomes inactive during meiotic maturation and is minimally active in MII eggs, which is consistent with the reported changes in SAM levels during mouse oocyte maturation.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Animais , Carbono/metabolismo , Ácido Fólico/metabolismo , Meiose , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metiltransferases/metabolismo , Camundongos , Oócitos/fisiologia , S-Adenosilmetionina/metabolismo
5.
J Cell Physiol ; 236(10): 7117-7133, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33634482

RESUMO

The period beginning with the signal for ovulation, when a fully-grown oocyte progresses through meiosis to become a mature egg that is fertilized and develops as a preimplantation embryo, is crucial for healthy development. The early preimplantation embryo is unusually sensitive to cell volume perturbations, with even moderate decreases in volume or dysregulation of volume-regulatory mechanisms resulting in developmental arrest. To prevent this, early embryos possess mechanisms of cell volume control that are apparently unique to them. These rely on the accumulation of glycine and betaine (N, N, N-trimethylglycine) as organic osmolytes-compounds that can provide intracellular osmotic support without the deleterious effects of inorganic ions. Preimplantation embryos also have the same mechanisms as somatic cells that mediate rapid responses to deviations in cell volume, which rely on inorganic ion transport. Both the unique, embryo-specific mechanisms that use glycine and betaine and the inorganic ion-dependent mechanisms undergo major changes during meiotic maturation and preimplantation development. The most profound changes occur immediately after ovulation is triggered. Before this, oocytes cannot regulate their volume, since they are strongly attached to their rigid extracellular matrix shell, the zona pellucida. After ovulation is triggered, the oocyte detaches from the zona pellucida and first becomes capable of independent volume regulation. A complex set of developmental changes in each cell volume-regulatory mechanism continues through egg maturation and preimplantation development. The unique cell volume-regulatory mechanisms in eggs and preimplantation embryos and the developmental changes they undergo appear critical for normal healthy embryo development.


Assuntos
Betaína/metabolismo , Blastocisto/metabolismo , Tamanho Celular , Glicina/metabolismo , Bombas de Íon/metabolismo , Oócitos/metabolismo , Osmorregulação , Animais , Desenvolvimento Embrionário , Humanos , Pressão Osmótica , Ovulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...