Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 43(39): 6609-6618, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37562962

RESUMO

Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Masculino , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Substância Negra , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem
2.
MAGMA ; 36(2): 159-173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37081247

RESUMO

The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
3.
Magn Reson Med ; 89(2): 756-766, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198030

RESUMO

PURPOSE: Oscillating gradient spin-echo (OGSE) sequences have demonstrated an ability to probe time-dependent microstructural features, although they often suffer from low SNR due to increased TEs. In this work we introduce frequency-tuned bipolar (FTB) gradients as a variation of oscillating gradients with reduced TE and demonstrate their utility by mapping the frequency dispersion of kurtosis in human subjects. METHODS: An FTB oscillating gradient waveform is presented that provides encoding of 1.5 net oscillation periods, thereby reducing the TE of the acquisition. Simulations were performed to determine an optimal protocol based on the SNR of kurtosis frequency dispersion-defined as the difference in kurtosis between pulsed and oscillating gradient acquisitions. Healthy human subjects were scanned at 7T using pulsed gradient and an optimized 23 Hz FTB protocol, which featured a maximum b-value of 2500 s/mm2 . In addition, to directly compare existing methods, measurements using traditional cosine OGSE were also acquired. RESULTS: FTB oscillating gradients demonstrated equivalent frequency-dependent diffusion measurements compared with cosine-modulated OGSE while enabling a significant reduction in TE. Optimization and in vivo results suggest that FTB gradients provide increased SNR of kurtosis dispersion maps compared with traditional cosine OGSE. The optimized FTB gradient protocol demonstrated consistent reductions in apparent kurtosis values and increased diffusivity in generated frequency dispersion maps. CONCLUSIONS: This work presents an alternative to traditional cosine OGSE sequences, enabling more time-efficient acquisitions of frequency-dependent diffusion quantities as demonstrated through in vivo kurtosis frequency dispersion maps.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Difusão
4.
Genes (Basel) ; 13(9)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140839

RESUMO

BACKGROUND: Individuals with 22q11.2 deletion syndrome (22q11DS) are at increased risk of developing psychosis and cognitive impairments, which may be related to dopaminergic and glutamatergic abnormalities. Therefore, in this exploratory study, we examined the association between dopaminergic and glutamatergic functioning in 22q11DS. Additionally, the associations between glutamatergic functioning and brain volumes in 22q11DS and healthy controls (HC), as well as those between dopaminergic and cognitive functioning in 22q11DS, were also examined. METHODS: In this cross-sectional, multimodal imaging study, glutamate, glutamine, and their combined concentration (Glx) were assessed in the anterior cingulate cortex (ACC) and striatum in 17 22q11DS patients and 20 HC using 7T proton magnetic resonance spectroscopy. Ten 22q11DS patients also underwent 18F-fallypride positron emission tomography to measure dopamine D2/3 receptor (D2/3R) availability in the ACC and striatum. Cognitive performance was assessed with the Cambridge Neuropsychological Test Automated Battery. RESULTS: No significant associations were found between ACC or striatal (1) glutamate, glutamine, or Glx concentrations and (2) D2/3R availability. In HC but not in 22q11DS patients, we found a significant relationship between ACC volume and ACC glutamate, glutamine, and Glx concentration. In addition, some aspects of cognitive functioning were significantly associated with D2/3R availability in 22q11DS. However, none of the associations remained significant after Bonferroni correction. CONCLUSIONS: Although our results did not reach statistical significance, our findings suggest an association between glutamatergic functioning and brain volume in HC but not in 22q11DS. Additionally, D2/3R availability seems to be related to cognitive functioning in 22q11DS. Studies in larger samples are needed to further elucidate our findings.


Assuntos
Síndrome de DiGeorge , Benzamidas , Cognição , Estudos Transversais , Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/genética , Dopamina , Ácido Glutâmico , Glutamina , Humanos , Tomografia por Emissão de Pósitrons , Espectroscopia de Prótons por Ressonância Magnética
5.
Addict Biol ; 26(1): e12870, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31865628

RESUMO

Cannabis is the most commonly used illicit drug in the world. However, because of a changing legal landscape and rising interest in therapeutic utility, there is an increasing trend in (long-term) use and possibly cannabis impairment. Importantly, a growing body of evidence suggests that regular cannabis users develop tolerance to the impairing, as well as the rewarding, effects of the drug. However, the neuroadaptations that may underlie cannabis tolerance remain unclear. Therefore, this double-blind, randomized, placebo-controlled, cross-over study assessed the acute influence of cannabis on the brain and behavioral outcomes in two distinct cannabis user groups. Twelve occasional and 12 chronic cannabis users received acute doses of cannabis (300-µg/kg delta-9-tetrahydrocannabinol) and placebo and underwent ultrahigh field functional magnetic resonance imaging and magnetic resonance spectroscopy. In occasional users, cannabis induced significant neurometabolic alterations in reward circuitry, namely, decrements in functional connectivity and increments in striatal glutamate concentrations, which were associated with increases in subjective high and decreases in performance on a sustained attention task. Such changes were absent in chronic users. The finding that cannabis altered circuitry and distorted behavior in occasional, but not chronic users, suggests reduced responsiveness of the reward circuitry to cannabis intoxication in chronic users. Taken together, the results suggest a pharmacodynamic mechanism for the development of tolerance to cannabis impairment, of which is important to understand in the context of the long-term therapeutic use of cannabis-based medications, as well as in the context of public health and safety of cannabis use when performing day-to-day operations.


Assuntos
Tolerância a Medicamentos , Abuso de Maconha/fisiopatologia , Recompensa , Atenção , Encéfalo/fisiopatologia , Cannabis , Cognição/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Dronabinol/farmacologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Desempenho Psicomotor/efeitos dos fármacos
6.
Eur J Med Genet ; 62(8): 103705, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31229682

RESUMO

22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a hemizygous microdeletion on the long arm of chromosome 22 and is associated with a high risk for psychosis and cognitive impairment. One of the genes located in the deleted region of 22q11DS is Proline Dehydrogenase (PRODH) which is important for conversion of proline to glutamate. Glutamate is the primary excitatory neurotransmitter and is involved in the pathophysiology of psychosis as well as in cognition. Excessive concentrations are toxic. Possibly, neuroprotective drugs modulating glutamatergic neurotransmission could be effective in treating psychotic symptoms and cognitive enhancement in patients with 22q11DS. Riluzole is a potent anti-glutamatergic drug that reduces glutamatergic neurotransmission. Here we report acute (single dose) and long-term effects of riluzole on glutamate and GABA levels in the anterior cingulate cortex (ACC) and striatum (measured with magnetic resonance spectroscopy, 1H-MRS) as well as on psychotic symptoms and cognitive functioning in a medication-free 23-year old woman with 22q11DS. Patient presented with frequent auditory and visual hallucinations and mild paranoid ideas. The 1H-MRS measurements showed that after a single dose riluzole (50 mg), glutamate in the ACC and striatum was reduced whereas striatal GABA increased compared to baseline. Strikingly, hallucinations and paranoia disappeared. Therefore, riluzole treatment was initiated and patient was followed up after 18 months of treatment. At follow-up, patient reported no hallucinations or paranoia and several cognitive functions were improved. Furthermore, glutamate concentrations in the ACC and striatum decreased whereas GABA concentrations increased in the striatum but decreased in the ACC. These results suggests that riluzole may be an effective treatment option for psychotic symptoms and cognitive enhancement in 22q11DS. Results warrant replication in a bigger sample.


Assuntos
Síndrome de DiGeorge/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , Riluzol/administração & dosagem , Adulto , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Prolina/metabolismo , Prolina Oxidase/genética , Transtornos Psicóticos/genética , Transtornos Psicóticos/patologia , Adulto Jovem
7.
Eur Neuropsychopharmacol ; 29(2): 247-256, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30553697

RESUMO

Cannabis is the most commonly used illicit drug and is known to alter state of consciousness and impair neurocognitive function. However, the mechanisms underlying these effects have yet to be fully elucidated. Rodent studies suggest that Δ9-tetrahydrocannabinol (THC) activates dopaminergic neurons in the limbic system, subsequently enhancing dopamine, which is implicated in the rewarding effects of cannabis. Additional evidence suggests that THC may act indirectly on dopamine firing by modulating GABA and glutamate release. This double-blind, placebo-controlled study assessed the acute influence of two doses of THC on brain kinetics of glutamate, GABA, and dopamine, in relation to behavioral outcomes, by using magnetic resonance spectroscopy and functional magnetic resonance imaging. Twenty occasional cannabis users received acute doses of cannabis (300 µg/kg THC) and placebo, in one of two dose regimes (full dose and divided dose), during two separate testing days. Administration of THC increased striatal glutamate concentrations, and dopamine as indicated by a reduction in functional connectivity (FC) between the nucleus accumbens (NAc) and cortical areas. Alterations in glutamate and FC were dose dependent and evident in the full dose group where THC serum concentrations exceeded 2 ng/ml at T-max. Average glutamate changes correlated strongly with FC alterations. Additionally, THC induced changes in FC correlated with feelings of subjective high and decreased performance on an attention task. Taken together, this suggests that THC elicits subjective and cognitive alterations via increased striatal dopaminergic activity and loss of corticostriatal connectivity, which is associated with an increase in striatal glutamate.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dronabinol/administração & dosagem , Ácido Glutâmico/metabolismo , Vias Neurais/diagnóstico por imagem , Adulto , Córtex Cerebral/efeitos dos fármacos , Correlação de Dados , Estudos Transversais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Oxigênio/sangue , Desempenho Psicomotor , Descanso , Escala Visual Analógica
8.
Neuroimage Clin ; 19: 47-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30035001

RESUMO

The brain can be considered a network, existing of multiple interconnected areas with various functions. MRI provides opportunities to map the large-scale network organization of the brain. We tap into the neurobiochemical dimension of these networks, as neuronal functioning and signal trafficking across distributed brain regions relies on the release and presence of neurotransmitters. Using high-field MR spectroscopic imaging at 7.0 T, we obtained a non-invasive snapshot of the spatial distribution of the neurotransmitters GABA and glutamate, and investigated interregional associations of these neurotransmitters. We demonstrate that interregional correlations of glutamate and GABA concentrations can be conceptualized as networks. Furthermore, patients with epilepsy display an increased number of glutamate and GABA connections and increased average strength of the GABA network. The increased glutamate and GABA connectivity in epilepsy might indicate a disrupted neurotransmitter balance. In addition to epilepsy, the 'neurotransmitter networks' concept might also provide new insights for other neurological diseases.


Assuntos
Mapeamento Encefálico , Encéfalo/patologia , Epilepsia/patologia , Neurotransmissores/metabolismo , Adulto , Idoso , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
9.
Int J Neuropsychopharmacol ; 21(9): 809-813, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917080

RESUMO

Loudness dependence of auditory evoked potentials (LDAEP) is a widely used EEG-based biomarker for central serotonergic activity. Serotonin has been shown to be associated with different psychiatric disorders such as depression and schizophrenia. Despite its clinical significance, the underlying neurochemical mechanism of this promising marker is not fully understood, and further research is needed to improve its validity. Other neurotransmitters might have a significant impact on this measure. Thus, we assessed the inhibitory action through individual GABA/H20 concentrations and GABA/glutamate ratios by means of magnetic resonance spectroscopy at 3T in healthy subjects. The measurements were assessed in the primary auditory cortex to investigate the association with the LDAEP, whose generators are mainly in the primary auditory cortex. For the first time, this study examines the link between GABAergic neurotransmission and LDAEP, and the data preliminary show that GABA may not contribute to the generation of EEG-based LDAEP.


Assuntos
Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Espectroscopia de Prótons por Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Estimulação Acústica/métodos , Adulto , Córtex Auditivo/diagnóstico por imagem , Ácido Glutâmico/metabolismo , Humanos , Masculino , Transmissão Sináptica/fisiologia , Água/metabolismo , Adulto Jovem
10.
Neuroimage ; 178: 769-779, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890330

RESUMO

Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Volume Sanguíneo Cerebral/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
11.
Hum Brain Mapp ; 38(8): 3975-3987, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480987

RESUMO

Gamma-aminobutyric acid (GABA) and glutamate are believed to have inhibitory and exhibitory neuromodulatory effects that regulate the brain's response to sensory perception. Furthermore, frequency-specific synchronization of neuronal excitability within the gamma band (30-80 Hz) is attributable to a homeostatic balance between excitation and inhibition. However, our understanding of the physiological mechanism underlying gamma rhythms is based on animal models. Investigations of the relationship between GABA concentrations, glutamate concentrations, and gamma band activity in humans were mostly restricted to the visual cortex and are conflicting. Here, we performed a multimodal imaging study combining magnetic resonance spectroscopy (MRS) with electroencephalography (EEG) in the auditory cortex. In 14 healthy subjects, we investigated the impact of individual differences in GABA and glutamate concentration on gamma band response (GBR) following auditory stimulus presentation. We explored the effects of bulk GABA on the GBR across frequency (30-200 Hz) and time (-200 to 600 ms) and found no significant relationship. Furthermore, no correlations were found between gamma peak frequency or power measures and metabolite concentrations (GABA, glutamate, and GABA/glutamate ratio). These findings suggest that, according to MRS measurements, and given the auditory stimuli used in this study, GABA and glutamate concentrations are unlikely to play a significant role in the inhibitory and excitatory drive in the generation of gamma band activity in the auditory cortex. Hum Brain Mapp 38:3975-3987, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Ritmo Gama/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Eletroencefalografia , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
12.
Magn Reson Med ; 78(6): 2216-2225, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28244138

RESUMO

PURPOSE: In order to benefit from the increased spectral bandwidth at ultrahigh field (UHF), the use of parallel transmission (pTx) to mitigate flip-angle inhomogeneity in chemical exchange saturation transfer (CEST) imaging is investigated. THEORY AND METHODS: A pTx basis pulse is homogenised by magnitude least-squares (MLS) optimization and expanded to form a frequency-selective saturation pulse for CEST. The pTx saturation pulse was simulated with a three-pool Bloch-McConnell equation to evaluate the impact of pTx on CEST contrast. In vivo CEST imaging performance (7 T) of the pTx saturation pulse and the standard Gaussian saturation in circularly polarized mode were compared. Two-spokes pTx homogeneous excitation was used in all in vivo experiments to ensure fair comparison of the two saturation pulses. Magnetization transfer ratio and inverse Z-spectrum analyses were used as metrics in evaluating the data from 3 healthy volunteers. RESULTS: Bloch-McConnell simulations showed that side bands of the pTx saturation pulse at ±20 ppm did not affect any CEST contrast. Improved homogeneity in contrasts and relaxation-compensated CEST metrics were observed in our in vivo data when the pTx saturation pulse was used. CONCLUSION: A pTx-based pulsed CEST presaturation scheme is proposed and validated by simulations and 7T in vivo imaging. Magn Reson Med 78:2216-2225, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Simulação por Computador , Voluntários Saudáveis , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Análise dos Mínimos Quadrados , Masculino , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes , Espectrofotometria
13.
J Neurosci Res ; 95(9): 1796-1808, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28117486

RESUMO

Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and ß-1 electrical generators. © 2017 Wiley Periodicals, Inc.


Assuntos
Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Adulto , Química Encefálica/fisiologia , Imagem de Difusão por Ressonância Magnética , Eletroencefalografia , Ácido Glutâmico/análise , Giro do Cíngulo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino
14.
Magn Reson Med ; 78(5): 1883-1890, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28019035

RESUMO

PURPOSE: To eliminate a slice-position-dependent excitation error commonly observed in bipolar-gradient composite excitations such as spokes pulses in parallel transmission. THEORY AND METHODS: An undesired timing delay between subpulses in the composite pulse and their bipolar slice-selective gradient is hypothesized to cause the error. A mathematical model is presented here to relate this mismatch to an induced slice-position-dependent phase difference between the subpulses. A new navigator method is proposed to measure the timing mismatch and eliminate the error. This is demonstrated at 7 Tesla with flip-angle maps measured by a presaturation turbo-flash sequence and in vivo images acquired by a simultaneous multislice/echo-planar imaging (SMS-EPI) sequence. RESULTS: Error-free flip-angle maps were obtained in two ways: 1) by correcting the time delay directly and 2) by applying the corresponding slice-position-dependent phase differences to the subpulses. This confirms the validity of the mathematical description. The radiofrequency (RF)-gradient delay measured by the navigator method was of 6.3 µs, which agreed well with the estimate from flip-angle maps at different delay times. By applying the timing correction, accurately excited EPI images were acquired with bipolar dual-spokes SMS-2 excitations. CONCLUSION: An effective correction is proposed to mitigate slice-position-dependent errors in bipolar composite excitations caused by undesired RF-gradient timing delays. Magn Reson Med 78:1883-1890, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Imagens de Fantasmas
15.
Magn Reson Med ; 78(3): 1050-1058, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27774641

RESUMO

PURPOSE: In order to fully benefit from the improved signal-to-noise and contrast-to-noise ratios at 9.4T, the challenges of B1+ inhomogeneity and the long acquisition time of high-resolution 2D gradient-recalled echo (GRE) imaging were addressed. THEORY AND METHODS: Flip angle homogenized excitations were achieved by parallel transmission (pTx) of 3-spoke pulses, designed by magnitude least-squares optimization in a slice-by-slice fashion; the acquisition time reduction was achieved by simultaneous multislice (SMS) pulses. The slice-specific spokes complex radiofrequency scaling factors were applied to sinc waveforms on a per-channel basis and combined with the other pulses in an SMS slice group to form the final SMS-pTX pulse. Optimal spokes locations were derived from simulations. RESULTS: Flip angle maps from presaturation TurboFLASH showed improvement of flip angle homogenization with 3-spoke pulses over CP-mode excitation (normalized root-mean-square error [NRMSE] 0.357) as well as comparable excitation homogeneity across the single-band (NRMSE 0.119), SMS-2 (NRMSE 0.137), and SMS-3 (NRMSE 0.132) 3-spoke pulses. The application of the 3-spoke SMS-3 pulses in a 48-slice GRE protocol, which has an in-plane resolution of 0.28 × 0.28 mm, resulted in a 50% reduction of scan duration (total acquisition time 6:52 min including reference scans). CONCLUSION: Time-efficient flip angle homogenized high-resolution GRE imaging at 9.4T was accomplished by using slice-specific SMS-pTx spokes excitations. Magn Reson Med 78:1050-1058, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Análise dos Mínimos Quadrados , Masculino
16.
MAGMA ; 30(1): 29-39, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27485854

RESUMO

OBJECTIVE: Ultrahigh field MRI provides great opportunities for medical diagnostics and research. However, ultrahigh field MRI also brings challenges, such as larger magnetic susceptibility induced field changes. Parallel-transmit radio-frequency pulses can ameliorate these complications while performing advanced tasks in routine applications. To address one class of such pulses, we propose an optimal-control algorithm as a tool for designing advanced multi-dimensional, large flip-angle, radio-frequency pulses. We contrast initial conditions, constraints, and field correction abilities against increasing pulse trajectory acceleration factors. MATERIALS AND METHODS: On an 8-channel 7T system, we demonstrate the quasi-Newton algorithm with pulse designs for reduced field-of-view imaging with an oil phantom and in vivo with scans of the human brain stem. We used echo-planar imaging with 2D spatial-selective pulses. Pulses are computed sufficiently rapid for routine applications. RESULTS: Our dataset was quantitatively analyzed with the conventional mean-square-error metric and the structural-similarity index from image processing. Analysis of both full and reduced field-of-view scans benefit from utilizing both complementary measures. CONCLUSION: We obtained excellent outer-volume suppression with our proposed method, thus enabling reduced field-of-view imaging using pulse trajectory acceleration factors up to 4.


Assuntos
Tronco Encefálico/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Ondas de Rádio , Algoritmos , Mapeamento Encefálico , Tronco Encefálico/patologia , Imagem Ecoplanar , Humanos , Aumento da Imagem , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes
17.
MAGMA ; 29(3): 333-45, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26995492

RESUMO

OBJECTIVES: To overcome the challenges of B0 and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B0 and flip-angle homogenisation was implemented on a human 9.4 T scanner. MATERIALS AND METHODS: Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B0- and B1-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B0 shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T1- and T 2 (*) -weighted images with MPRAGE and 3D EPI, respectively. RESULTS: Over six in vivo acquisitions, the B0-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10 ± 0.01 ppm (39 ± 2 Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode's 30.5 ± 0.9 to 9.2 ± 0.7 % with all B 1 (+)  voids eliminated. The SNR inhomogeneities and contrast variations in the T1- and T 2 (*) -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T1-weighted image. CONCLUSION: A 15-minute B0- and flip-angle homogenisation workflow, including the B0- and B1-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Aumento da Imagem/métodos , Encéfalo/patologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Calibragem , Meios de Contraste/química , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Ondas de Rádio , Fluxo de Trabalho
18.
NMR Biomed ; 28(11): 1393-401, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26387856

RESUMO

The purpose of this work was to show that the overall peak power of RF pulses for CAIPIRINHA excitation can be substantially reduced by applying interslice phase relaxation. The optimal phases are scan dependent and can be quickly calculated by the proposed method. The multi-band RF pulse design is implemented as the minimization of a linear objective function with quadratic constraints. The interslice phase is considered to be a variable for optimization. In the case of a phase cycling scheme (CAIPIRINHA), the peak power is considered over all pulses. The computation time (about 1 s) is compatible with online RF pulse design. It is shown that the optimal interslice phases depend on the CAIPIRINHA scheme used and that RF peak power is reduced when the CAIPIRINHA phase cycling is taken into account in the optimization. The proposed method is extremely fast and results in RF pulses with low peak power for CAIPIRINHA excitation. The MATLAB implementation is given in the appendix; it allows for online determination of scan-dependent phase parameters. Furthermore, the method can be easily extended to pTx shimming systems in the context of multi-slice excitations, and this possibility is included in the software.


Assuntos
Algoritmos , Transferência de Energia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Aumento da Imagem/métodos , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
J Magn Reson ; 254: 110-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25863895

RESUMO

There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Campos Eletromagnéticos , Desenho de Equipamento , Cabeça/anatomia & histologia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas , Controle de Qualidade , Ondas de Rádio , Água , Fluxo de Trabalho
20.
PLoS One ; 9(9): e106609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184505

RESUMO

The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS) being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA) and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI). In this study GABA concentration in the posterior cingulate cortex (PCC) was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS) from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio) were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.


Assuntos
Ácido Glutâmico/isolamento & purificação , Rede Nervosa/diagnóstico por imagem , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/isolamento & purificação , Adulto , Mapeamento Encefálico , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Rede Nervosa/metabolismo , Radiografia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...