Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutat Res ; 784-785: 16-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26789486

RESUMO

Cells lacking deoxycytidine deaminase (DCD) have been shown to have imbalances in the normal dNTP pools that lead to multiple phenotypes, including increased mutagenesis, increased sensitivity to oxidizing agents, and to a number of antibiotics. In particular, there is an increased dCTP pool, often accompanied by a decreased dTTP pool. In the work presented here, we show that double mutants of Escherichia coli lacking both DCD and NDK (nucleoside diphosphate kinase) have even more extreme imbalances of dNTPs than mutants lacking only one or the other of these enzymes. In particular, the dCTP pool rises to very high levels, exceeding even the cellular ATP level by several-fold. This increased level of dCTP, coupled with more modest changes in other dNTPs, results in exceptionally high mutation levels. The high mutation levels are attenuated by the addition of thymidine. The results corroborate the critical importance of controlling DNA precursor levels for promoting genome stability. We also show that the addition of certain exogenous nucleosides can influence replication errors in DCD-proficient strains that are deficient in mismatch repair.


Assuntos
Citidina Desaminase/genética , Escherichia coli/genética , Mutação , Núcleosídeo-Difosfato Quinase/genética , Citidina Desaminase/metabolismo , RNA Polimerases Dirigidas por DNA , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Taxa de Mutação , Núcleosídeo-Difosfato Quinase/metabolismo , Timidina/farmacologia
2.
J Bacteriol ; 194(20): 5613-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904280

RESUMO

Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rif(r) and the gyrB gene leading to Nal(r) and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Mutação , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Desoxirribonucleotídeos/metabolismo , Taxa de Mutação , Ribonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...