Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960510

RESUMO

Smart remaining useful life (RUL) prognosis methods for condition-based maintenance (CBM) of engineering equipment are getting high popularity nowadays. Current RUL prediction models in the literature are developed with an ideal database, i.e., a combination of a huge "run to failure" and "run to prior failure" data. However, in real-world, run to failure data for rotary machines is difficult to exist since periodic maintenance is continuously practiced to the running machines in industry, to save any production downtime. In such a situation, the maintenance staff only have run to prior failure data of an in operation machine for implementing CBM. In this study, a unique strategy for the RUL prediction of two identical and in-process slurry pumps, having only real-time run to prior failure data, is proposed. The obtained vibration signals from slurry pumps were utilized for generating degradation trends while a hybrid nonlinear autoregressive (NAR)-LSTM-BiLSTM model was developed for RUL prediction. The core of the developed strategy was the usage of the NAR prediction results as the "path to be followed" for the designed LSTM-BiLSTM model. The proposed methodology was also applied on publically available NASA's C-MAPSS dataset for validating its applicability, and in return, satisfactory results were achieved.


Assuntos
Prognóstico , Humanos
2.
Sensors (Basel) ; 21(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923270

RESUMO

Laser ultrasonic technology can provide a non-contact, reliable and efficient inspection of train rails. However, the laser-generated signals measured at the railhead are usually contaminated with a high level of noise and unwanted wave components that complicate the identification of defect echoes in the signal. This study explores the possibility of combining laser ultrasonic technology (LUT) and an enhanced matching pursuit (MP) to achieve a fully non-contact inspection of the rail track. A completely non-contact laser-based inspection system was used to generate and sense Rayleigh waves to detect artificial surface horizontal, surface edge, subsurface horizontal and subsurface vertical defects created at railheads of different dimensions. MP was enhanced by developing two novel dictionaries, which include a finite element method (FEM) simulation dictionary and an experimental dictionary. The enhanced MP was used to analyze the experimentally obtained laser-generated Rayleigh wave signals. The results show that the enhanced MP is highly effective in detecting defects by suppressing noise, and, further, it could also overcome the deficiency in the low repeatability of the laser-generated signals. The comparative analysis of MP with both the FEM simulation and experimental dictionaries shows that the enhanced MP with the FEM simulation dictionary is highly efficient in both noise removal and defect detection from the experimental signals captured by a laser-generated ultrasonic inspection system. The major novelty contributed by this research work is the enhanced MP method with the developments of, first, an FEM simulation dictionary and, second, an experimental dictionary that is especially suited for Rayleigh wave signals. Third, the enhanced MP dictionaries are created to process the Rayleigh wave signals generated by laser excitation and received using a 3D laser scanner. Fourth, we introduce a pioneer application of such laser-generated Rayleigh waves for inspecting surface and subsurface detects occurring in train rails.

3.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899669

RESUMO

Multiple wire twisted steel strands are commonly used to hoist elevators, concrete structures, etc. Due to frequent and long-time usage, the steel strands are subjected to corrosion, overloads, and aging, making strands may fail unexpectedly. Hence, the health monitoring of steel strands becomes more important to avoid the sudden collapse of hoisting structures. Guided waves (GW) inspection methods have become favorable in recent years due to its long-distance transmission and stability of evaluation in the area of structural health monitoring (SHM) and Non-Destructive Testing (NDT). Many researchers have reported different GW methods to detect different types of defects that occurred in steel strands. However, researchers rarely carry out comparative studies to investigate the effectiveness of each method or system in monitoring the health state of steel strands. This article reports some vital observations revealed from conducting experiments by using contact and noncontact methods, which include three different popular types of GW sensors and methods during their applications in surface-type defect detection. The proper selection of sensors systems has been identified through the present study. The result of the present study is believed to be useful guidance for selecting appropriate GW methods and sensor systems to monitor the integrity of the steel strand and thereby ensure the safety of the hoisted structures.

4.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(12): 2717-2730, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32746217

RESUMO

To perform a complete scan of a small diameter pipe is difficult for two reasons. First, the beam directivity of the Lamb wave within a small diameter pipe is worse than that within a large diameter pipe. Second, the circumferential range of the small diameter pipe is so limited that it can allow less transducer to be attached on its surface. That means the signals from various circumferential positions are difficult to obtain. This article reports a method that can scan damage within a small diameter pipe using a partially covered axially magnetized magnetostrictive patch transducer (AM-MPT) around the circumference of a pipe based on the analysis of the beam directivity of the MHz Lamb wave. The partially covered AM-MPT was moved around the circumference of a pipe for subsequent measurements to get signals from various circumferential positions. To trigger strong enough MHz Lamb wave, the circumferential coverage of the partially covered AM-MPT was not less than half of the circumference of the pipe, and the greater length-to-width ratio of the magnetostrictive patch was used. The analytical model of beam directivity of the Lamb wave was used to study the Lamb wave propagation in the rolled plate. Then the analytical model was modulated to evaluate the damage scan within a small diameter pipe. The experimental results supported the analytical model through different circumferential coverages of the transducer, and different sizes and axial positions of the damage. The proposed method was proven to have the potential to be applied to damage scans within a small diameter pipe.

5.
Opt Lett ; 44(23): 5695-5698, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774756

RESUMO

The Letter presents a new design of Sagnac interferometer-based optical system (SIOS) that emits a line-arrayed pattern generating narrowband high-energy waves in a specimen. The SIOS is further used to excite Rayleigh waves in a pristine rail specimen to evaluate its intrinsic nonlinearity resulting from the lattice anharmonicity and dissolved impurities. Such a nonlinearity appears in the response in the form of a second harmonic that is sensed in this Letter using a scanning laser Doppler vibrometer. In addition to this noncontact measurement, a contact measurement of the nonlinearity of rail steel using wedge transducers is also carried out to compare the performance of the SIOS. Both experimentally evaluated nonlinearities are compared with those obtained using the nonlinear elasticity equations. The close agreement with the theoretically estimated nonlinearity and higher repeatability shows that the SIOS is effective in measuring the intrinsic nonlinearity of the rail steel and, thereby, predicting the health status of the rail specimens before fixing them on the track.


Assuntos
Dispositivos Ópticos , Ferrovias , Dinâmica não Linear , Transdutores
6.
Sensors (Basel) ; 19(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071986

RESUMO

The polygonal drill pipe is one of the most critical yet weakest part in a high-torque drill machine. The inspection of a polygonal drill pipe to avoid its failure and thus to ensure safe operation of the drilling machine is of great importance. However, the current most frequently used ultrasonic inspection method is time-consuming and inefficient when dealing with a polygonal drill pipe, which is normally up to several meters. There is an urgent need to develop an efficient method to inspect polygonal drill pipes. In this paper, an ultrasonic guided wave technique is proposed to inspect polygonal drill pipes. Dispersion curves of polygonal drill pipes are firstly derived by using the semi-analytical finite element method. The ALID (absorbing layer using increasing damping) technique is applied to eliminate unwanted boundary reflections. The propagation characteristics of ultrasonic guided waves in normal, symmetrically damaged, and asymmetrically damaged polygonal drill pipes are studied. The results have shown that the ultrasonic guided wave technique is a promising and effective method for the inspection of polygonal drill pipes.

7.
Ultrasonics ; 82: 57-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753416

RESUMO

Second harmonic generation has been widely used in characterizing microstructural changes which are evenly distributed in a whole structure. However, few attention has been paid to evaluating localized micro-scale damages. In this paper, second harmonic reflection and transmission from the primary S0 mode Lamb wave interacting with a localized microstructural damage is numerically discussed. Schematic diagram for deriving fundamental temporal waveform and reconstructing the second harmonic temporal waveform based on Morlet wavelet transform is presented. Second harmonic reflection and transmission from an interface between the zones of linear elastic and nonlinear materials is firstly studied to verify the existence of interfacial nonlinearity. Compositions contributing to second harmonic components in the reflected and transmitted waves are analyzed. Amplitudes of the reflected and transmitted second harmonic components generated at an interface due to the interfacial nonlinearity are quantitatively evaluated. Then, second harmonic reflection and transmission from a localized microscale damage is investigated. The effects of the length and width of a microscale damage on WCPA (wavelet coefficient profile area) of the reflected and transmitted second harmonic components are studied respectively. It is found that the second harmonic component in the reflected waves mainly reflects the interfacial nonlinearity while second harmonic in the transmitted waves reflects the material nonlinearity. These findings provide some basis on using second harmonic generation for characterization and detection of localized microstructural changes.

8.
Opt Lett ; 42(21): 4255-4258, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088136

RESUMO

The laser-based transmitter used in this Letter is composed of an integrated optical Mach-Zehnder interferometer, which was first used in fault diagnosis. With the help of the effective signal processing method and laser-based integrated optical Mach-Zehnder (IOMZ) system, the location of the defect in an aluminum plate can be successfully determined. Moreover, a comparison study is conducted to investigate the effectiveness of both the conventional laser spot source and the IOMZ interferometer-based laser source. The results indicate that the IOMZ interferometer-based method can be very useful to the nondestructive testing research field. The potential for industrial applications is also significant, especially for the health monitoring and integrity inspection of metal plates.


Assuntos
Nível de Saúde , Interferometria/métodos , Dispositivos Ópticos , Lasers , Luz , Fotografação , Processamento de Sinais Assistido por Computador , Ondas Ultrassônicas , Ultrassom
9.
Materials (Basel) ; 10(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772980

RESUMO

Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for damage detection results from numerical simulations and experiments on steel pipes are presented.

10.
ISA Trans ; 69: 1-9, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28477895

RESUMO

This paper investigates the output feedback normalization and stabilization for singular fractional order systems with the fractional commensurate order α belonging to (0,2). Firstly, an effective criterion for the normalization of singular fractional order systems is given with output differential feedback. Afterwards, both static and dynamic output feedback stabilization of such normalized fractional order systems are derived. Besides, the robustness to the parameter uncertainty and the initial conditions are discussed in detail. All the results are given via linear matrix inequality (LMI) formulation. Finally, three numerical examples are provided to demonstrate the applicability of the proposed approaches.

11.
Sensors (Basel) ; 17(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216586

RESUMO

Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

12.
Sensors (Basel) ; 17(2)2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178220

RESUMO

Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.

13.
ISA Trans ; 62: 94-102, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26850750

RESUMO

A novel numerical approximation scheme is proposed for fractional order systems by the concept of identification. An identical equation is derived firstly, from which one can obtain the exact state space model of fractional order systems. It reveals the nature of the approximation problem, and then provides an effective scheme to obtain the desired model. This research project also focuses on solving a knotty but crucial issue, i.e., the initial value problem of fractional order systems. The results generated by the study prove that it can reduce to the Caputo case by selecting some specific initial values. A careful simulation study is reported to illustrate the effectiveness of the proposed scheme. To exhibit the superiority clearly, the results are compared with that of the published fixed-pole finite model method.

14.
Ultrasonics ; 64: 25-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26315506

RESUMO

Lamb wave technique has been widely used in non-destructive evaluation (NDE) and structural health monitoring (SHM). However, due to the multi-mode characteristics and dispersive nature, Lamb wave propagation behavior is much more complex than that of bulk waves. Numerous numerical simulations on Lamb wave propagation have been conducted to study its physical principles. However, few quantitative studies on evaluating the accuracy of these numerical simulations were reported. In this paper, a method based on cross correlation analysis for quantitatively evaluating the simulation accuracy of time-transient Lamb waves propagation is proposed. Two kinds of error, affecting the position and shape accuracies are firstly identified. Consequently, two quantitative indices, i.e., the GVE (group velocity error) and MACCC (maximum absolute value of cross correlation coefficient) derived from cross correlation analysis between a simulated signal and a reference waveform, are proposed to assess the position and shape errors of the simulated signal. In this way, the simulation accuracy on the position and shape is quantitatively evaluated. In order to apply this proposed method to select appropriate element size and time step, a specialized 2D-FEM program combined with the proposed method is developed. Then, the proper element size considering different element types and time step considering different time integration schemes are selected. These results proved that the proposed method is feasible and effective, and can be used as an efficient tool for quantitatively evaluating and verifying the simulation accuracy of time-transient Lamb wave propagation.

15.
Sensors (Basel) ; 14(5): 8528-46, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24834908

RESUMO

Compared with conventional linear ultrasonic inspection methods, which are sensitive only to severe defects, nonlinear ultrasonic inspection methods are better for revealing micro-cracks in thin plates. However, most nonlinear ultrasonic inspection methods have only been experimentally investigated using bulk or Rayleigh waves. Numerical studies, especially numerical simulations of Lamb ultrasonic waves, have seldom been reported. In this paper, the interaction between nonlinear S0 mode Lamb waves and micro-cracks of various lengths and widths buried in a thin metallic plate was simulated using the finite element method (FEM). The numerical results indicate that after interacting with a micro-crack, a new wave-packet was generated in addition to the S0 mode wave-packet. The second harmonics of the S0 mode Lamb waves and the new wave-packet were caused by nonlinear acoustic effects at the micro-crack. An amplitude ratio indicator is thus proposed for the early detection of buried micro-cracks.

16.
Sensors (Basel) ; 14(1): 1295-321, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24419162

RESUMO

In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any work in the literature that studies this practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number of scenarios for data collection, by predicting concurrent defects from training data of normal and single defects. The proposed OVA diagnostic approach is evaluated with empirical analysis using support vector machine (SVM) and C4.5 decision tree, two popular classification algorithms frequently applied to system health diagnostics and prognostics. Statistical features are extracted from the time domain and the frequency domain. Prediction performance of the proposed strategy is compared with that of a simple multi-class classification, as well as that of random guess and worst-case classification. We have verified the potential of the proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected vibration data sets.


Assuntos
Diagnóstico , Modelos Teóricos , Prognóstico , Algoritmos , Inteligência Artificial , Humanos , Máquina de Vetores de Suporte
17.
Sensors (Basel) ; 13(11): 15726-46, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24253191

RESUMO

The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.

18.
Sensors (Basel) ; 13(9): 12663-86, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24051527

RESUMO

Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.


Assuntos
Algoritmos , Óleos , Reconhecimento Automatizado de Padrão/métodos , Reologia/instrumentação , Dióxido de Silício , Máquina de Vetores de Suporte , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento/métodos
19.
Appl Radiat Isot ; 69(1): 237-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20870415

RESUMO

Radon diffusion through soil and into air is investigated. The solution of the relevant diffusion equation is given using the explicit finite difference method. Results from a two-medium model (soil-air) are compared to those from a simplified single-medium model (soil alone). The latter are an underestimate in early stages of the diffusion process. Later on, the two models match closely and either one can be used at equilibrium conditions to calculate radon diffusion, estimate indoor radon concentration and assess health hazards.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Radônio/química , Poluentes Radioativos do Solo/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Difusão , Análise Numérica Assistida por Computador , Radônio/análise
20.
J Environ Radioact ; 102(2): 103-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21112133

RESUMO

Radon-222 diffusion in an anhydrous andesitic melt was investigated. The melts were glass discs formed artificially from melted volcanic materials. Solutions of the relevant diffusion equations were done by the explicit finite difference method. Results were compared to analytical solutions reported in the literature and good agreement was found. We have shown that the explicit finite difference method is effective and accurate for solving equations that describe (222)Rn diffusion in andesitic melts, which is especially important when arbitrary initial and boundary conditions are required.


Assuntos
Modelos Químicos , Monitoramento de Radiação/métodos , Radônio/análise , Erupções Vulcânicas/análise , Difusão , Monitoramento de Radiação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...