Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520533

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.

2.
Biomolecules ; 13(9)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759762

RESUMO

To date, numerous aptamer-based biosensing platforms have been developed for sensitive and selective monitoring of target analytes, relying on analyte-induced conformational changes in the aptamer for the quantification of the analyte and the conversion of the binding event into a measurable signal. Despite the impact of these conformational rearrangements on sensor performance, the influence of the environment on the structural conformations of aptamers has rarely been investigated, so the link between parameters directly influencing aptamer folding and the ability of the aptamer to bind to the target analyte remains elusive. Herein, the effect a number of variables have on an aptamer's 3D structure was examined, including the pH of the buffering medium, as well as the anchoring of the aptamer on a solid support, with the use of two label-free techniques. Circular dichroism spectroscopy was utilized to study the conformation of an aptamer in solution along with any changes induced to it by the environment (analyte binding, pH, composition and ionic strength of the buffer solution), while quartz crystal microbalance with dissipation monitoring was employed to investigate the surface-bound aptamer's behavior and performance. Analysis was performed on an aptamer against oxytetracycline, serving as a model system, representative of aptamers selected against small molecule analytes. The obtained results highlight the influence of the environment on the folding and thus analyte-binding capacity of an aptamer and emphasize the need to deploy appropriate surface functionalization protocols in sensor development as a means to minimize the steric obstructions and undesirable interactions of an aptamer with a surface onto which it is tethered.


Assuntos
Oxitetraciclina , Modelos Biológicos , Oligonucleotídeos , Concentração de Íons de Hidrogênio
3.
Micromachines (Basel) ; 14(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630131

RESUMO

The presence of heavy metal ions in soil, air and water constitutes an important global environmental threat, as these ions accumulate throughout the food chain, contributing to the rise of chronic diseases, including, amongst others, cancer and kidney failure. To date, many efforts have been made for their detection, but there is still a need for the development of sensitive, low-cost, and portable devices able to conduct on-site detection of heavy metal ions. In this work, we combine microfluidic technology and electrochemical sensing in a plastic chip for the selective detection of heavy metal ions utilizing DNAzymes immobilized in between platinum nanoparticles (PtNPs), demonstrating a reliable portable solution for water pollution monitoring. For the realization of the microfluidic-based heavy metal ion detection device, a fast and easy-to-implement fabrication method based on the photolithography of dry photosensitive layers is proposed. As a proof of concept, we demonstrate the detection of Pb2+ ions using the prototype microfluidic device.

4.
Anal Bioanal Chem ; 415(4): 615-625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445454

RESUMO

Enzyme-based electrochemical biosensors have been widely deployed for the detection of a range of contaminants in different food products due to their significant advantages over other (bio)sensing techniques. Nevertheless, their performance is greatly affected by the sample matrix itself or by the matrix they are presented with in pretreated samples, both of which can impact the accuracy as well as the sensitivity of the measurements. Therefore, and in order to acquire reliable and accurate measurements, matrix effects and their influence on sensor performance should be taken into consideration. Herein, acetylcholinesterase (AChE)-modified electrochemical sensors were employed for the detection of pesticides in vegetable oils. Sensor interrogation with pretreated oil samples, spiked with carbofuran, revealed the inhibitory potential of the extracted matrix varies between different types of vegetable oil and their fatty acid content. In addition, synergies between the extracted matrix from different types of vegetable oils and the carbamate pesticide, carbofuran, were observed, which led to significant deviations of the sensor's performance from its anticipated behavior in buffered solution. Taking the aforementioned into consideration, appropriate calibration curves for each type of vegetable oil were drafted, which allowed for the highly reproducible determination of different pesticide concentrations in pretreated real samples. Collectively, a better understanding of AChE inhibition by single or multiple contaminants present in vegetable oils was gained, which can find many applications in numerous fields, ranging from sensor development to the design of new pesticides and medicinal products.


Assuntos
Técnicas Biossensoriais , Carbofurano , Praguicidas , Praguicidas/química , Acetilcolinesterase/química , Enzimas Imobilizadas/química , Óleos de Plantas , Técnicas Biossensoriais/métodos
5.
Sensors (Basel) ; 22(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632093

RESUMO

Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antibacterianos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Cromatografia , Inocuidade dos Alimentos , Humanos
6.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806753

RESUMO

In this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface. According to the morphological design of the waveguides, an improved sensitivity is achieved in comparison to the current technologies (<5000 nm/RIU). This platform is combined with a novel biofunctionalization methodology that involves material-selective surface chemistries and the high-resolution laser printing of biomaterials resulting in the development of an integrated photonics biosensor device that employs disposable microfluidics cartridges. The device is tested with cancer patient blood serum samples. The detection of periostin (POSTN) and transforming growth factor beta-induced protein (TGFBI), two circulating biomarkers overexpressed by cancer stem cells, is achieved in cancer patient serum with the use of the device.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Interferometria , Neoplasias/diagnóstico , Neoplasias/terapia , Óptica e Fotônica , Fótons , Reprodutibilidade dos Testes
7.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126549

RESUMO

Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs' surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor's performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10-9 to 2.3 × 10-8 mol/L, with a limit of detection equal to 0.6 × 10-9 mol/L and chlorpyrifos in a linear range from 0.7 × 10-9 up to 1.4 × 10-8 mol/L and a limit of detection 0.4 × 10-9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbamatos/análise , Custos e Análise de Custo , Limite de Detecção , Azeite de Oliva/química , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Técnicas Biossensoriais/economia , Carbono/química , Eletrodos , Análise de Alimentos/instrumentação , Contaminação de Alimentos/análise , Propriedades de Superfície
8.
Opt Express ; 25(7): 7483-7495, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380870

RESUMO

We extend our previous simulation study and we present experimental results regarding our Fast Fourier Transform method for the calculation of the resonance shifts in biosensors based on micro-ring resonators (MRRs). For the simulation study, we use a system model with a tunable laser at 850 nm, an MRR with 1.5∙104 quality factor, and a detection system with 50 dB maximum signal-to-noise ratio, and investigate the impact on the system performance of factors like the number of the resonance peaks inside the scanning window, the wavelength dependence of the laser power, and the asymmetry of the transfer functions of the MRRs. We find that the performance is improved by a factor of 2 when we go from single- to four-peak transfer functions, and that the impact of the wavelength dependence of the laser power is very low. We also find that the presence of asymmetries can lead to strong discontinuities of the transfer functions at the edges of the scanning window and can significantly increase the measurement errors, making necessary the use of techniques for their elimination. Using these conclusions, we build a system with sensing MRRs on TriPleX platform, and we experimentally validate our method using sucrose solutions with different concentrations. Involving techniques in order to exclude the noise originating from the microfluidic system, we achieve a wavelength resolution close to 0.08 pm, when the system operates with 0.5 pm scanning step. In combination with the sensitivity of the MRRs, which is measured to be equal to 93.7 nm/RIU, this wavelength resolution indicates the possibility for a limit of detection close to 8.5·10-7 RIU, which represents to the best of our knowledge a record performance for this type of optical sensors and this level of scanning steps.

9.
Pharmacol Ther ; 178: 1-17, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28322970

RESUMO

Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Radiossensibilizantes/uso terapêutico , Animais , Epigenômica , Humanos , Hipertermia Induzida , Sistema Imunitário/efeitos dos fármacos , Neoplasias/imunologia
10.
Langmuir ; 33(4): 848-853, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28040898

RESUMO

In this paper, we present the immobilization of thiol-modified aptamers on alkyne- or alkene-terminated silicon nitride surfaces by laser-induced click chemistry reactions. The aptamers are printed onto the surface by laser-induced forward transfer (LIFT), which also induces the covalent bonding of the aptamers by thiol-ene or thiol-yne reactions that occur upon UV irradiation of the thiol-modified aptamers with ns laser pulses. This combination of LIFT and laser-induced click chemistry allows the creation of high-resolution patterns without the need for masks. Whereas the click chemistry already takes place during the printing process (single-step process) by the laser pulse used for the printing process, further irradiation of the LIFT-printed aptamers by laser pulses (two-step process) leads to a further increase in the immobilization efficiency.

11.
Stud Health Technol Inform ; 224: 90-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27225559

RESUMO

In this article novel approaches for the improvement of the recorded signal coupled with the feasibility of multiple analyte detection, irrespective of the biosensor platform are being presented. The techniques that have been developed address commonly encountered issues that have traditionally hindered the commercialization of biosensors, such as cost, reproducibility and sensitivity and most importantly multianalyte detection. The fluorescence-based detection of copper is being described as an example of the use of Laser Induced Forward Transfer technique (LIFT) for the immobilization of biomolecules with high spatial resolution, in addition to a technique that involves the displacement of a short complementary strand to the immobilized probe molecule for the quantification of analyte binding and the enhancement of the recorded signal.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cobre/análise , Lasers , DNA Catalítico , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...