Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 854, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558559

RESUMO

Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.

2.
Sci Rep ; 9(1): 2017, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765778

RESUMO

Nuclear nanomedicine, with its targeting ability and heavily loading capacity, along with its enhanced retention to avoid rapid clearance as faced with molecular radiopharmaceuticals, provides unique opportunities to treat tumors and metastasis. Despite these promises, this field has seen limited activities, primarily because of a lack of suitable nanocarriers, which are safe, excretable and have favorable pharmacokinetics to efficiently deliver and retain radionuclides in a tumor. Here, we introduce biodegradable laser-synthesized Si nanoparticles having round shape, controllable low-dispersion size, and being free of any toxic impurities, as highly suitable carriers of therapeutic 188Re radionuclide. The conjugation of the polyethylene glycol-coated Si nanoparticles with radioactive 188Re takes merely 1 hour, compared to its half-life of 17 hours. When intravenously administered in a Wistar rat model, the conjugates demonstrate free circulation in the blood stream to reach all organs and target tumors, which is radically in contrast with that of the 188Re salt that mostly accumulates in the thyroid gland. We also show that the nanoparticles ensure excellent retention of 188Re in tumor, not possible with the salt, which enables one to maximize the therapeutic effect, as well as exhibit a complete time-delayed conjugate bioelimination. Finally, our tests on rat survival demonstrate excellent therapeutic effect (72% survival compared to 0% of the control group). Combined with a series of imaging and therapeutic functionalities based on unique intrinsic properties of Si nanoparticles, the proposed biodegradable complex promises a major advancement in nuclear nanomedicine.


Assuntos
Portadores de Fármacos/química , Nanomedicina , Nanopartículas/química , Radioisótopos/química , Radioisótopos/uso terapêutico , Rênio/química , Rênio/uso terapêutico , Segurança , Silício/química , Linhagem Celular Tumoral , Humanos , Medicina Nuclear , Polietilenoglicóis/química , Radioisótopos/farmacocinética , Rênio/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...