Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(4): 799-806, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253010

RESUMO

The generation and control of entanglement in a quantum mechanical system are critical elements of nearly all quantum applications. Molecular systems are promising candidates, with numerous degrees of freedom able to be targeted. However, knowledge of intersystem entanglement mechanisms in such systems is limited. In this work, we demonstrate the generation of entanglement between vibrational degrees of freedom in molecules via strong coupling to a cavity mode driven by a weak coherent field. In a bimolecular system, we show that entanglement can be generated not only between the cavity and molecular system but also between molecules. This process also results in the generation of nonclassical states of light, providing potential pathways for harnessing entanglement in molecular systems.

2.
Nat Commun ; 14(1): 4745, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550329

RESUMO

Quantum teleportation constitutes a fundamental tool for various applications in quantum communication and computation. However, state-of-the-art continuous-variable quantum teleportation is restricted to moderate fidelities and short-distance configurations. This is due to unavoidable experimental imperfections resulting in thermal decoherence during the teleportation process. Here we present a heralded quantum teleporter able to overcome these limitations through noiseless linear amplification. As a result, we report a high fidelity of 92% for teleporting coherent states using a modest level of quantum entanglement. Our teleporter in principle allows nearly complete removal of loss induced onto the input states being transmitted through imperfect quantum channels. We further demonstrate the purification of a displaced thermal state, impossible via conventional deterministic amplification or teleportation approaches. The combination of high-fidelity coherent state teleportation alongside the purification of thermalized input states permits the transmission of quantum states over significantly long distances. These results are of both practical and fundamental significance; overcoming long-standing hurdles en route to highly-efficient continuous-variable quantum teleportation, while also shining new light on applying teleportation to purify quantum systems from thermal noise.

3.
Sci Rep ; 13(1): 11722, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474540

RESUMO

The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential. Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation, and that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability in the general case remains an open problem. In this study, we introduce a larger class of states that we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively transformed into this class, meaning that for all two-mode Gaussian states, entanglement potential is equivalent to squeezing of formation. We provide an explicit algorithm for the passive transformations and perform extensive numerical testing of our claim, which seeks to unite the resource theories of two characteristic quantum properties of continuous-variable systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...