Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 10(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535143

RESUMO

Rapid and precise identification of Coronavirus Disease 2019 (COVID-19) is pivotal for effective patient care, comprehending the pandemic's trajectory, and enhancing long-term patient survival rates. Despite numerous recent endeavors in medical imaging, many convolutional neural network-based models grapple with the expressiveness problem and overfitting, and the training process of these models is always resource-intensive. This paper presents an innovative approach employing Xception, augmented with cutting-edge transfer learning techniques to forecast COVID-19 from X-ray thorax images. Our experimental findings demonstrate that the proposed model surpasses the predictive accuracy of established models in the domain, including Xception, VGG-16, and ResNet. This research marks a significant stride toward enhancing COVID-19 detection through a sophisticated and high-performing imaging model.

2.
J Imaging ; 8(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547477

RESUMO

Seismic full wave inversion (FWI) is a widely used non-linear seismic imaging method used to reconstruct subsurface velocity images, however it is time consuming, has high computational cost and depend heavily on human interaction. Recently, deep learning has accelerated it's use in several data-driven techniques, however most deep learning techniques suffer from overfitting and stability issues. In this work, we propose an edge computing-based data-driven inversion technique based on supervised deep convolutional neural network to accurately reconstruct the subsurface velocities. Deep learning based data-driven technique depends mostly on bulk data training. In this work, we train our deep convolutional neural network (DCN) (UNet and InversionNet) on the raw seismic data and their corresponding velocity models during the training phase to learn the non-linear mapping between the seismic data and velocity models. The trained network is then used to estimate the velocity models from new input seismic data during the prediction phase. The prediction phase is performed on a resource-constrained edge device such as Raspberry Pi. Raspberry Pi provides real-time and on-device computational power to execute the inference process. In addition, we demonstrate robustness of our models to perform inversion in the presence on noise by performing both noise-aware and no-noise training and feeding the resulting trained models with noise at different signal-to-noise (SNR) ratio values. We make great efforts to achieve very feasible inference times on the Raspberry Pi for both models. Specifically, the inference times per prediction for UNet and InversionNet models on Raspberry Pi were 22 and 4 s respectively whilst inference times for both models on the GPU were 2 and 18 s which are very comparable. Finally, we have designed a user-friendly interactive graphical user interface (GUI) to automate the model execution and inversion process on the Raspberry Pi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA