Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115908, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171102

RESUMO

The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.


Assuntos
Microalgas , Biocombustíveis , Reatores Biológicos , Fermentação , Hidrogênio , Combustíveis Fósseis , Biomassa
2.
Toxics ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505546

RESUMO

Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.

3.
Mar Drugs ; 21(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37367656

RESUMO

Microalgal biomass is characterized by high protein, carbohydrates, and lipids concentrations. However, their qualitative and quantitative compositions depend not only on the cultivated species but also on the cultivation conditions. Focusing on the microalgae's ability to accumulate significant fatty acids (FAs) amounts, they can be valorized either as dietary supplements or for biofuel production, depending on the accumulated biomolecules. In this study, a local isolate (Nephroselmis sp.) was precultured under autotrophic conditions, while the Box-Behnken experimental design followed using the parameters of nitrogen (0-250 mg/L), salinity (30-70 ppt) and illuminance (40-260 µmol m-2 s-1) to evaluate the accumulated biomolecules, with an emphasis on the amount of FAs and its profile. Regardless of the cultivation conditions, the FAs of C14:0, C16:0, and C18:0 were found in all samples (up to 8% w/w in total), while the unsaturated C16:1 and C18:1 were also characterized by their high accumulations. Additionally, the polyunsaturated FAs, including the valuable C20:5n3 (EPA), had accumulated when the nitrogen concentration was sufficient, and the salinity levels remained low (30 ppt). Specifically, EPA approached 30% of the total FAs. Therefore, Nephroselmis sp. could be considered as an alternative EPA source compared to the already-known species used in food supplementation.


Assuntos
Clorófitas , Microalgas , Lipídeos/farmacologia , Biomassa , Nitrogênio/metabolismo , Salinidade , Ácidos Graxos/metabolismo , Clorófitas/metabolismo , Microalgas/metabolismo
4.
Bioresour Technol ; 361: 127660, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872279

RESUMO

Anaerobic digestion is a complex process, involving various microorganism groups and, consequently, several reactions. An easy-to-use protocol for the rate-limiting step determination of the process is proposed. The hydrogen production, acetate production, and acetate consumption rates can be calculated, according to a structured algorithm. During the rate limiting step determination, several compounds (biopolymer and monomer representatives, as well as sodium acetate) were used, combined or not with the substrate, to draw the corresponding conclusions. Three substrates were tested, characterized by specific organic compound groups (carbohydrates, proteins, and fats). All three substrates followed the acetate-consuming pathway for the organic matter conversion to methane. In this study, the rate-limiting step for the pathway of acetate consumption was acetate production. Determining the rate-limiting step through the proposed protocol can point to the appropriate actions needed to boost methane production, like substrate pretreatment, using an acidogenic reactor, or checking for the presence of inhibitors.


Assuntos
Acetatos , Metano , Acetatos/metabolismo , Anaerobiose , Reatores Biológicos
5.
Chemosphere ; 296: 133985, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176306

RESUMO

Greece produces significant amounts of residual biomass due to its intense agricultural and agro-industrial sector. The anaerobic digestion process has been frequently considered as the best environmental and economic solution for energy recovery from different biodegradable waste such as agricultural waste, livestock manure, agro-industrial waste, as well as for their co-digestion. The aim of this study was the assessment of biochemical methane potential (BMP) of biomass feedstocks representative of Northern and Southern Greece, which are available during the fall/winter and spring/summer seasons, through the implementation of BMP assays. The raw residues evaluated in the current work included: (a) crop residues (corn silage and unsuitable for human consumption watermelon), (b) agro-industrial residues (malt, tomato processing residues, orange peels and olive pomace) and (c) livestock (cattle) manure. Tests of both single substrates and various mixtures were conducted for the evaluation of their methane yields. The results of the mono-substrates are in accordance with other studies in the literature, with watermelon presenting the highest methane potential (421.0 ± 3.4 ml CH4/g VSadded). After the evaluation of the mixtures and mono-substrates results, the most promising mixtures seemed to be the following: a) for Northern Greece, 10% corn silage-80% cattle manure-10% malt, b) for Southern Greece spring/summer season, 10% corn silage-14% cattle manure-66% watermelon-10% tomato processing residues, and c) for Southern Greece fall/winter season, 10% corn silage-57% cattle manure-23% orange peels-10% olive pomace.


Assuntos
Biocombustíveis , Esterco , Anaerobiose , Animais , Bovinos , Grécia , Metano , Zea mays/química
6.
J Environ Manage ; 301: 113853, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624575

RESUMO

Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Biocombustíveis , Metano , RNA Ribossômico 16S/genética
7.
Membranes (Basel) ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34564480

RESUMO

Fresh water shortages affect larger areas each year due to the increased human population combined with climate change. Reuse of treated sewage water (mostly for nonpotable uses) can have a significant impact on reducing water scarcity. Ultrafiltration membranes are widely considered as a very good candidate for the remediation of this type of water. The case of Patras' sewage treatment plant was examined for the treatment of its secondary settling tank effluent using a pilot ultrafiltration unit to produce permeate water suitable for reuse according to Greek legislation. The physicochemical characteristics of the membrane permeate stream showed significant improvements in the quality of the produced water. Turbidity was reduced by 99%, total suspended solids were decreased by more than 94%, while COD was reduced by 37%. E. coli and Enterococcus were detected at high concentrations in the feed stream but were eliminated in the membrane permeate. The results presented herein indicate that the installed equipment is capable of producing improved quality water suitable for reuse even with the strictest limits imposed by Greek legislation.

8.
J Hazard Mater ; 404(Pt A): 124147, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059251

RESUMO

The direct disposal of municipal solid waste such as nappies to the environment may create serious pollution problems. Based on the circular economy and waste management concepts, the conversion of nappies and/or their ingredients (such as super absorbent polymer (SAP)) to high added value products is of great importance. In this work, a modified SAP (MSAP) was examined as an adsorbent for treatment of contaminated waters and uranium recovery. Batch experiments and spectroscopic techniques were used to examine the effect of various parameters (pH, contact time, temperature, initial concentration, and ionic strength), and the mechanism of adsorption U(VI) and desorption process. The U(VI) concentration was determined by alpha spectroscopy after addition of 232U standard tracer solution to account for possible interferences during electrodeposition and alpha particle counting. The maximum adsorption monolayer capacity was found to be 217.4 mg/g at pH 4.0 and at 298 K. The adsorption of U(VI) on MSAP seems to occur mainly via the formation of inner-sphere surface complexes between U(VI) and the carboxylic surface moieties of MSAP. The MSAP could satisfactorily be regenerated with 0.1 M Na2CO3 (>90%) and it also shows a promising applicability to real wastewaters contaminated with U(VI).

9.
Waste Manag ; 118: 655-666, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011543

RESUMO

Anaerobic sludge originating from the co-digestion of used disposable nappies and expired food products treated in a pilot two-stage system was examined as feed material for a continuous pilot-scale composter (capacity: 300 L feed per week). The feed materials and final compost products were analyzed and evaluated for their suitability as compost materials. Ιn terms of stability, the compost products were identified as stable through static respiratory index measurement (0.11-0.24 g O2/(kg Volatile Solids h)), heavy metals concentrations were within acceptable limits (i.e. concentration of Cu, Cd, Zn, Pb, Cr, As lower than 1 mg/kg dry mass) as well as polycyclic aromatic hydrocarbons (0.06-0.34 mg/kg dry mass lower than 6 mg/kg dry mass). During composting, significant losses of nitrogen from the digestate and the urea added for C/N correction were observed (51-75%), indicating that the adjustment of C/N ratio through the addition of chemicals is not efficient in composting processes with forced aeration and the pre-existing nitrogen in digestate was susceptible to air-stripping. The continuous composting process implemented proved capable of producing mature compost with a retention time of 14 d. The final products were within acceptable limits for all the parameters examined, except for the presence of pathogens (Salmonella and Enterococcus) which were not eliminated, even though the composter reached 56 °C for 3-4 days at the thermophilic stage. The characteristics of the anaerobic sludge samples examined indicate that direct land application of the anaerobic effluent should be considered as an option.


Assuntos
Compostagem , Metais Pesados , Anaerobiose , Metais Pesados/análise , Esgotos , Solo
10.
Waste Manag ; 112: 20-29, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32480300

RESUMO

Typical used disposable nappies usually consist of nonwoven fabrics, Super Absorbent Polymer (SAP), and organic material, namely fluffy pulp, urine and/or excreta. Currently, this waste stream is being disposed to landfills causing many environmental issues. An alternative management method could be the valorisation of the biodegradable material through anaerobic digestion, and the recycling of plastics and SAP. Pretreatment of nappies is mandatory to separate SAP and plastics from the organic material. The aim of this work was the development of a process to minimize SAP's volume, as this component can swell up to 1500 times its own mass by water absorbance, thus hindering any further biological process. CaCl2, MgCl2, and a range of CaCl2/MgCl2 combinations were tested against their deswelling efficiency on SAP, residual reagent concentration and reagent cost. The mixture of 20% CaCl2 and 50% MgCl2 (w/w) of SAP was concluded as the suitable combination of salts achieving a final SAP volume reduction of 92.7% with low residual cation concentrations and minimum cost. The physicochemical characterization of nappies' hydrolysate that took place to estimate its adequacy as substrate for anaerobic digestion resulted to a COD:N ratio within the acceptable range for a subsequent anaerobic digestion processing.


Assuntos
Polímeros , Reciclagem , Anaerobiose , Reatores Biológicos , Plásticos , Instalações de Eliminação de Resíduos , Água
11.
Environ Sci Pollut Res Int ; 27(3): 2977-2991, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838691

RESUMO

Olive mill wastewater (OMW) is characterized as a high-strength effluent due to the high organic load, low biodegradability, and presence of phytotoxic compounds. Most of the OMW treatment methods proposed, including adsorption, focus mainly on the reduction of chemical oxygen demand and recovery of polyphenols. Adsorption studies aiming at nutrient removal from OMW are very limited. In the present work, Ca(OH)2-treated zeolite (CaT-Z) in a granular form was used for simultaneous recovery of phosphate (PO43-) and potassium (K+) ions from two samples of anaerobically digested OMW. Nutrient adsorption was investigated as a function of contact time, pH and dilution of OMW with deionized water. The lower removal efficiency of phosphorus (P) by CaT-Z was observed at higher dilution ratios consisted of 3.125-6.25% OMW-1 and 5% OMW-2. The maximum P removal was 73.9% in 25% OMW-1 and 85.9% in 10% OMW-2. Potassium removal, as the predominant cation of OMW samples, increased from 17.3 to 46.1% in OMW-1 and from 15.1 to 57.7% in OMW-2 with increasing dilution. The maximum experimental adsorption capacities were 15.8 mg K and 2.14 mg P per gram of CaT-Z. Five sequential treatments of 50% OMW-2 with fresh CaT-Z at each stage ensured a cumulative removal of 87.5% for P and 74.9% for K. Adsorption kinetics were faster for K than for P. The plant-available P was found to be the predominant fraction on the loaded CaT-Z. Electron Probe Micro-analysis confirmed the enhanced content of K and P on the loaded CaT-Z, whereas X-ray mapping revealed the co-distribution of Ca and P. This study demonstrates the potential usage of CaT-Z as an immobilization medium of P and K from anaerobically treated OMW.


Assuntos
Olea , Fosfatos/química , Eliminação de Resíduos Líquidos/métodos , Zeolitas/química , Cálcio , Resíduos Industriais , Azeite de Oliva , Potássio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...