Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(15): 154501, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272800

RESUMO

We report the three-phase (hydrate-liquid water-vapor) equilibrium conditions of the hydrogen-water binary system calculated with molecular dynamics simulations via the direct phase coexistence approach. A significant improvement of ∼10.5 K is obtained in the current study, over earlier simulation attempts, by using a combination of modifications related to the hydrogen model that include (i) hydrogen Lennard-Jones parameters that are a function of temperature and (ii) the water-guest energy interaction parameters optimized further by using the Lorentz-Berthelot combining rules, based on an improved description of the solubility of hydrogen in water.


Assuntos
Hidrogênio , Água , Simulação de Dinâmica Molecular , Temperatura , Solubilidade
2.
J Chem Phys ; 157(9): 094703, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075716

RESUMO

We have performed molecular dynamics simulations to study the adsorption of ten hydrate anti-agglomerants onto a mixed methane-propane sII hydrate surface covered by layers of liquid water of various thickness. As a general trend, we found that the more liquid water that is present on the hydrate surface, the less favorable the adsorption becomes even though there are considerable differences between the individual molecules, indicating that the presence and thickness of this liquid water layer are crucial parameters for anti-agglomerant adsorption studies. Additionally, we found that there exists an optimal thickness of the liquid water layer favoring hydrate growth due to the presence of both liquid water and hydrate-forming guest molecules. For all other cases of liquid water layer thickness, hydrate growth is slower due to the limited availability of hydrate-forming guests close to the hydrate formation front. Finally, we investigated the connection between the thickness of the liquid water layer and the degree of subcooling and found a very good agreement between our molecular dynamics simulations and theoretical predictions.

3.
J Chem Phys ; 155(2): 024702, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34266278

RESUMO

We use a novel hybrid method to explore the temperature dependence of the solid-liquid interfacial tension of a system that consists of solid methane hydrate and liquid water. The calculated values along the three-phase (hydrate-liquid water-vapor) equilibrium line are obtained through the combination of available experimental measurements and computational results that are based on approaches at the atomistic scale, including molecular dynamics and Monte Carlo. An extensive comparison with available experimental and computational studies is performed, and a critical assessment and re-evaluation of previously reported data is presented.

4.
Phys Chem Chem Phys ; 23(19): 11180-11185, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33949498

RESUMO

The dissociation process of spherical sII mixed methane-propane hydrate particles in liquid hydrocarbon was investigated via microsecond-long molecular dynamics simulations. A strong dependence of the melting temperature on the particle size was found. Analysis in the context of the Gibbs-Thomson effect provided insights into the fundamental properties of gas hydrates.

5.
Phys Chem Chem Phys ; 20(44): 28026-28038, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383048

RESUMO

The current study employs Grand Canonical Monte Carlo simulations in order to calculate the process efficiency of separating CH4 + CO2 gas mixtures by utilizing structure sI clathrate hydrates. The temperature and pressure conditions examined in the current study resemble those used in industry. The simulation results are compared with experimental measurements and very good agreement is found. In addition, hydrate cage occupancies are compared with experimental measurements and calculations using a commercial simulator. Excellent agreement is found only for the case of large cages, while for the case of small cages significant disagreement is observed.

6.
J Phys Chem B ; 120(50): 12890-12900, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27936740

RESUMO

Atomistic molecular dynamics simulations were carried out to obtain the diffusion coefficients of CO2 in n-hexane, n-decane, n-hexadecane, cyclohexane, and squalane at temperatures up to 423.15 K and pressures up to 65 MPa. Three popular models were used for the representation of hydrocarbons: the united atom TraPPE (TraPPE-UA), the all-atom OPLS, and an optimized version of OPLS, namely, L-OPLS. All models qualitatively reproduce the pressure dependence of the diffusion coefficient of CO2 in hydrocarbons measured recently, and L-OPLS was found to be the most accurate. Specifically for n-alkanes, L-OPLS also reproduced the measured viscosities and densities much more accurately than the original OPLS and TraPPE-UA models, indicating that the optimization of the torsional potential is crucial for the accurate description of transport properties of long chain molecules. The three force fields predict different microscopic properties such as the mean square radius of gyration for the n-alkane molecules and pair correlation functions for the CO2-n-alkane interactions. CO2 diffusion coefficients in all hydrocarbons studied are shown to deviate significantly from the Stokes-Einstein behavior.

7.
J Chem Phys ; 145(7): 074109, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544089

RESUMO

Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

8.
Phys Chem Chem Phys ; 18(34): 23538-48, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27507133

RESUMO

Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

9.
J Chem Phys ; 144(12): 124512, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036466

RESUMO

We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

10.
J Chem Phys ; 143(9): 094506, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26342376

RESUMO

The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

11.
J Chem Phys ; 142(4): 044501, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25637989

RESUMO

The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

12.
J Phys Chem B ; 118(20): 5532-41, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24749622

RESUMO

Molecular dynamics simulations were employed for the calculation of diffusion coefficients of CO2 in H2O. Various combinations of existing force fields for H2O (SPC, SPC/E, and TIP4P/2005) and CO2 (EPM2 and TraPPE) were tested over a wide range of temperatures (283.15 K < T < 623.15 K) and pressures (0.1 MPa < P < 100.0 MPa). All force-field combinations qualitatively reproduce the trends of the experimental data; however, two specific combinations were found to be more accurate. In particular, at atmospheric pressure, the TIP4P/2005-EPM2 combination was found to perform better for temperatures lower than 323.15 K, while the SPC/E-TraPPE combination was found to perform better at higher temperatures. The pressure dependence of the diffusion coefficient of CO2 in H2O at constant temperature is shown to be negligible at temperatures lower than 473.15 K, in good agreement with experiments. As temperature increases, the pressure effect becomes substantial. The phenomenon is driven primarily by the higher compressibility of liquid H2O at near-critical conditions. Finally, a simple power-law-type phenomenological equation is proposed to correlate the simulation values; the proposed correlation should be useful for engineering calculations.

13.
J Phys Chem B ; 115(6): 1411-5, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21254758

RESUMO

The objective of this work is to study the binary He-THF hydrate with both experimental and theoretical approaches. Experimental data for the hydrate equilibrium at pressures up to 12.6 MPa are reported for the binary He-THF hydrate with stoichiometric THF composition (i.e., 5.56 mol % THF). These data are used to calibrate a thermodynamic model [J. Phys. Chem. C2009, 113, 422] for the prediction of hydrate equilibrium that is based on the van der Waals-Platteeuw statistical thermodynamic theory. Then this model is used to extrapolate the obtained experimental data to much higher pressures, and good agreement is observed with other available experimental data at pressures up to 150 MPa. This model is also capable of estimating the cavity occupancies for He and THF. The results show that the large cavities are completely occupied by THF molecules, whereas the small ones are partially occupied by He atoms. The He occupancy of the small cavities is less than 60%, even at high pressures (100 MPa). The occupancies predicted from this model are in close agreement with similar results from molecular simulations and a previously reported thermodynamic approach.

14.
J Colloid Interface Sci ; 297(2): 738-48, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16359693

RESUMO

We study the periods that develop in the drying of capillary porous media, particularly the constant rate (CRP) and the falling rate (FRP) periods. Drying is simulated with a 3-D pore-network model that accounts for the effect of capillarity and buoyancy at the liquid-gas interface and for diffusion through the porous material and through a boundary layer over the external surface of the material. We focus on the stabilizing or destabilizing effects of gravity on the shape of the drying curve and the relative extent of the various drying periods. The extents of CRP and FRP are directly associated with various transition points of the percolation theory, such as the breakthrough point and the main liquid cluster disconnection point. Our study demonstrates that when an external diffusive layer is present, the constant rate period is longer.


Assuntos
Dessecação , Teste de Materiais , Porosidade , Difusão , Cinética
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 2): 056303, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17279989

RESUMO

A two-dimensional pore-network model based on invasion percolation is used to study the patterns obtained from the release of methane during the dissociation of methane hydrates (without including dissociation kinetics) caused by a sudden pressure reduction in the system below the hydrate equilibrium pressure. The concept of the critical gas saturation S(gc) (volume fraction of the gas phase at the onset of bulk gas flow) is introduced to analyze gas hydrate dissociation. The effects of throat-size distribution (corresponding to off-shore oceanic sediments or on-shore sediments under permafrost), applied pressure difference across the network, and initial hydrate saturation on the resulting gas patterns and on the critical gas saturation are examined to determine the possibility of producing methane. As expected, large throat sizes or wide throat distributions, large pressure drops, and higher initial hydrate saturation act as promoters for the production of the released gas. For typical deep ocean sediments with small pore sizes and low hydrate saturation, it may be difficult to produce methane resulting from hydrate dissociation.

16.
J Colloid Interface Sci ; 270(2): 388-95, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14697705

RESUMO

The critical gas saturation, S(gc), denotes the volume fraction of the gas phase at the onset of bulk gas flow during the depressurization of a supersaturated liquid in a porous medium. In the absence of gradients due to viscous or gravity forces, S(gc) is controlled by nucleation, capillary forces, and the rate of decline of the supersaturation. In this paper we address one important additional effect, that of buoyancy. We use 2-D pore-network simulations, based on invasion percolation in a gradient (IPG), and corresponding scaling relations to obtain the dependence of S(gc) on the gravity Bond number, B, under conditions of slow growth, namely when mass transfer is sufficiently fast. The critical gas saturation approaches two plateau values at low and high Bond numbers. In the in-between region it scales as a power law of B, which for a 2-D lattice is S(gc) approximately B(-0.91).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...