Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(45): e2220518120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903276

RESUMO

Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.


Assuntos
Bacteriófago lambda , Capsídeo , Bacteriófago lambda/genética , Capsídeo/química , Temperatura , Microscopia Crioeletrônica , DNA Viral/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise
2.
QRB Discov ; 3: e2, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529281

RESUMO

The viral replication cycle is controlled by information transduced through both molecular and mechanical interactions. Viral infection mechanics remains largely unexplored, however, due to the complexity of cellular mechanical responses over the course of infection as well as a limited ability to isolate and probe these responses. Here, we develop an experimental system consisting of herpes simplex virus type 1 (HSV-1) capsids bound to isolated and reconstituted cell nuclei, which allows direct probing of capsid-nucleus mechanics with atomic force microscopy (AFM). Major mechanical transformations occur in the host nucleus when pressurised viral DNA ejects from HSV-1 capsids docked at the nuclear pore complexes (NPCs) on the nuclear membrane. This leads to structural rearrangement of the host chromosome, affecting its compaction. This in turn regulates viral genome replication and transcription dynamics as well as the decision between a lytic or latent course of infection. AFM probing of our reconstituted capsid-nucleus system provides high-resolution topographical imaging of viral capsid docking at the NPCs as well as force volume mapping of the infected nucleus surface, reflecting mechanical transformations associated with chromatin compaction and stiffness of nuclear lamina (to which chromatin is tethered). This experimental system provides a novel platform for investigation of virus-host interaction mechanics during viral genome penetration into the nucleus.

3.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960783

RESUMO

Penetration of the viral genome into a host cell nucleus is critical for initiation of viral replication for most DNA viruses and a few RNA viruses. For herpesviruses, viral DNA ejection into a nucleus occurs when the capsid docks at the nuclear pore complex (NPC) basket with the correct orientation of the unique capsid portal vertex. It has been shown that capsid vertex-specific component (CVSC) proteins, which are located at the twelve vertices of the human herpes simplex virus type 1 (HSV-1) capsid, interact with nucleoporins (Nups) of NPCs. However, it remained unclear whether CVSC proteins determine capsid-to-NPC binding. Furthermore, it has been speculated that terminal DNA adjacent to the portal complex of DNA-filled C-capsids forms a structural motif with the portal cap (which retains DNA in the capsid), which mediates capsid-NPC binding. We demonstrate that terminal viral DNA adjacent to the portal proteins does not present a structural element required for capsid-NPC binding. Our data also show that level of CVSC proteins on the HSV-1 capsid affects level of NPC binding. To elucidate the capsid-binding process, we use an isolated, reconstituted cell nucleus system that recapitulates capsid-nucleus binding in vivo without interference from trafficking kinetics of capsids moving toward the nucleus. This allows binding of non-infectious capsid maturation intermediates with varying levels of vertex-specific components. This experimental system provides a platform for investigating virus-host interaction at the nuclear membrane.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Poro Nuclear/metabolismo , Animais , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , DNA Viral/metabolismo , Genoma Viral , Herpesvirus Humano 1/genética , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Células Vero , Proteínas Virais/genética , Montagem de Vírus , Replicação Viral
4.
Nucleic Acids Res ; 46(10): 5029-5049, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596642

RESUMO

We show that the alkylating cancer drug melphalan activated the DNA damage response and induced human papillomavirus type 16 (HPV16) late gene expression in an ATM- and Chk1/2-dependent manner. Activation of HPV16 late gene expression included inhibition of the HPV16 early polyadenylation signal that resulted in read-through into the late region of HPV16. This was followed by activation of the exclusively late, HPV16 splice sites SD3632 and SA5639 and production of spliced late L1 mRNAs. Altered HPV16 mRNA processing was paralleled by increased association of phosphorylated BRCA1, BARD1, BCLAF1 and TRAP150 with HPV16 DNA, and increased association of RNA processing factors U2AF65 and hnRNP C with HPV16 mRNAs. These RNA processing factors inhibited HPV16 early polyadenylation and enhanced HPV16 late mRNA splicing, thereby activating HPV16 late gene expression.


Assuntos
Dano ao DNA/genética , Interações Hospedeiro-Patógeno/genética , Papillomavirus Humano 16/genética , Processamento Pós-Transcricional do RNA , Fator de Processamento U2AF/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/patogenicidade , Humanos , Melfalan/farmacologia , Fosforilação/efeitos dos fármacos , Poliadenilação/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Fator de Processamento U2AF/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...