Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37891962

RESUMO

Microalgae are a renewable and sustainable source of bioactive compounds, such as essential amino acids, polyunsaturated fatty acids, and antioxidant compounds, that have been documented to have beneficial effects on nutrition and health. Among these natural products, the demand for natural antioxidants, as an alternative to synthetic antioxidants, has increased. The antioxidant activity of microalgae significantly varies between species and depends on growth conditions. In the last decade, microalgae have been explored in livestock animals as feed additives with the aim of improving both animals' health and performance as well as product quality and the environmental impact of livestock. These findings are highly dependent on the composition of microalgae strain and their amount in the diet. The use of carbohydrate-active enzymes can increase nutrient bioavailability as a consequence of recalcitrant microalgae cell wall degradation, making it a promising strategy for monogastric nutrition for improving livestock productivity. The use of microalgae as an alternative to conventional feedstuffs is becoming increasingly important due to food-feed competition, land degradation, water deprivation, and climate change. However, the cost-effective production and use of microalgae is a major challenge in the near future, and their cultivation technology should be improved by reducing production costs, thus increasing profitability.

2.
J Hazard Mater ; 241-242: 137-45, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23044197

RESUMO

The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160°C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.


Assuntos
Compostos Benzidrílicos/química , Compostos Benzidrílicos/efeitos da radiação , Resíduos Industriais/análise , Micro-Ondas , Polímeros/química , Polímeros/efeitos da radiação , Reciclagem/métodos , Hidróxido de Sódio/química , Varredura Diferencial de Calorimetria , Catálise , Cromatografia em Gel , Temperatura Alta , Hidrólise , Cinética , Estrutura Molecular , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...