Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotrauma Rep ; 2(1): 149-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34223550

RESUMO

The Traumatic Brain Injury Model Systems (TBIMS) is the largest longitudinal TBI data set in the world. Our study reviews the works using TBIMS data for analysis in the last 5 years. A search (2015-2020) was conducted across PubMed, EMBASE, and Google Scholar for studies that used the National Institute on Disability, Independent Living and Rehabilitation Research NIDILRR/VA-TBIMS data. Search terms were as follows: ["TBIMS" national database] within PubMed and Google Scholar, and ["TBIMS" AND national AND database] on EMBASE. Data sources, study foci (in terms of data processing and outcomes), study outcomes, and follow-up information usage were collected to categorize the studies included in this review. Variable usage in terms of TBIMS' form-based variable groups and limitations from each study were also noted. Assessment was made on how TBIMS' objectives were met by the studies. Of the 74 articles reviewed, 23 used TBIMS along with other data sets. Fifty-four studies focused on specific outcome measures only, 6 assessed data aspects as a major focus, and 13 explored both. Sample sizes of the included studies ranged from 11 to 15,835. Forty-two of the 60 longitudinal studies assessed follow-up from 1 to 5 years, and 15 studies used 10 to 25 years of the same. Prominent variable groups as outcome measures were "Employment," "FIM," "DRS," "PART-O," "Satisfaction with Life," "PHQ-9," and "GOS-E." Limited numbers of studies were published regarding tobacco consumption, the Brief Test of Adult Cognition by Telephone (BTACT), the Supervision Rating Scale (SRS), general health, and comorbidities as variables of interest. Generalizability was the most significant limitation mentioned by the studies. The TBIMS is a rich resource for large-sample longitudinal analyses of various TBI outcomes. Future efforts should focus on under-utilized variables and improving generalizability by validation of results across large-scale TBI data sets to better understand the heterogeneity of TBI.

2.
Pituitary ; 23(3): 273-293, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31907710

RESUMO

PURPOSE: To provide an overview of fundamental concepts in machine learning (ML), review the literature on ML applications in imaging analysis of pituitary tumors for the last 10 years, and highlight the future directions on potential applications of ML for pituitary tumor patients. METHOD: We presented an overview of the fundamental concepts in ML, its various stages used in healthcare, and highlighted the key components typically present in an imaging-based tumor analysis pipeline. A search was conducted across four databases (PubMed, Ovid, Embase, and Google Scholar) to gather research articles from the past 10 years (2009-2019) involving imaging related to pituitary tumor and ML. We grouped the studies by imaging modalities and analyzed the ML tasks in terms of the data inputs, reference standards, methodologies, and limitations. RESULTS: Of the 16 studies included in our analysis, 10 appeared in 2018-2019. Most of the studies utilized retrospective data and followed a semi-automatic ML pipeline. The studies included use of magnetic resonance imaging (MRI), facial photographs, surgical microscopic video, spectrometry, and spectroscopy imaging. The objectives of the studies covered 14 distinct applications and majority of the studies addressed a binary classification problem. Only five of the 11 MRI-based studies had an external validation or a holdout set to test the performance of a final trained model. CONCLUSION: Through our concise evaluation and comparison of the studies using the concepts presented, we highlight future directions so that potential ML applications using different imaging modalities can be developed to benefit the clinical care of pituitary tumor patients.


Assuntos
Aprendizado de Máquina , Neoplasias Hipofisárias/diagnóstico , Animais , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...