Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38806636

RESUMO

BACKGROUND: Microsensors have been used for the high-resolution particulate matter (PM) monitoring. OBJECTIVES: This study applies PM and health microsensors with the objective of assessing the peak exposure, sources, and immediate health impacts of PM2.5 and PM1 in two Asian countries. METHODS: Exposure assessment and health evaluation were carried out for 50 subjects in 2018 and 2019 in Bandung, Indonesia and for 55 subjects in 2019 and 2020 in Kaohsiung, Taiwan. Calibrated AS-LUNG sets and medical-certified RootiRx® sensors were used to assess PM and heart-rate variability (HRV), respectively. RESULTS: Overall, the 5-min mean exposure of PM2.5 and PM1 was 30.4 ± 20.0 and 27.0 ± 15.7 µg/m3 in Indonesia and 14.9 ± 11.2 and 13.9 ± 9.8 µg/m3 in Taiwan, respectively. The maximum 5-min peak PM2.5 and PM1 exposures were 473.6 and 154.0 µg/m3 in Indonesia and 467.4 and 217.7 µg/m3 in Taiwan, respectively. Community factories and mosquito coil burning are the two most important exposure sources, resulting in, on average, 4.73 and 5.82 µg/m3 higher PM2.5 exposure increments for Indonesian subjects and 10.1 and 9.82 µg/m3 higher PM2.5 exposure for Taiwanese subjects compared to non-exposure periods, respectively. Moreover, agricultural waste burning and incense burning were another two important exposure sources, but only in Taiwan. Furthermore, 5-min PM2.5 and PM1 exposure had statistically significantly immediate impacts on the HRV indices and heart rates of all subjects in Taiwan and the scooter subjects in Indonesia with generalized additive mixed models. The HRV change for a 10 µg/m3 increase in PM2.5 and PM1 ranged from -0.9% to -2.5% except for ratio of low-high frequency, with greater impacts associated with PM1 than PM2.5 in both countries. IMPACT STATEMENT: This work highlights the ability of microsensors to capture high peaks of PM2.5 and PM1, to identify exposure sources through the integration of activity records, and to assess immediate changes in heart rate variability for a panel of approximately 50 subjects in Indonesia and Taiwan. This study stands out as one of the few to demonstrate the immediate health impacts of peak PM, complementing to the short-term (days or weeks) or long-term effects (months or longer) assessed in most epidemiological studies. The technology/methodology employed offer great potential for researchers in the resource-limited countries with high PM2.5 and PM1 levels.

2.
Environ Geochem Health ; 45(8): 6267-6286, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37289259

RESUMO

Health risk assessments of exposure to mercury (Hg) from soils via ingestion and inhalation are indispensable for Taiwanese people living in the vicinity of Hg-contaminated sites. In this study, anthropogenic soils were collected from various polluted sources in Taiwan. In vitro oral and inhalation bioaccessible fractions of Hg were analyzed to avoid from overestimating the exposure risk. Discrepancies in oral and inhalation bioaccessible levels of Hg in soils were found using different in vitro assays with different pH levels and chemical compositions. The freshly contaminated soil (soil S7) polluted by chlor-alkali production activity sampled before the site was remediated had the highest total Hg concentration of 1346 mg/kg, with the highest oral bioaccessibility of 26.2% as analyzed by SW-846 Method 1340 and inhalation bioaccessibility of 30.5% as analyzed by modified Gamble's solution. The lesser extent of aging of Hg in soil S7 increased the Hg availability for humans, which was also found based on results of a sequential extraction procedure. Results of the hazard quotient showed that soil ingestion was the main pathway causing non-carcinogenic risks for children and adults. Children were also exposed to higher risks than were adults due to higher frequencies of hand-to-mouth behaviors and lower body weights. Furthermore, hazard index results adjusted for oral and inhalation bioaccessible Hg were lower than those obtained based on the total Hg content; however, an unacceptable value of the non-carcinogenic risk (> 1) for children living near soil S7 was still observed. This study suggests that children living near sites polluted for a short period of time may suffer potential renal effects regardless of the bioaccessibility. Our findings provide suggestions for decision makers on setting new strategies for managing risks of Hg-contaminated soils in Taiwan.


Assuntos
Mercúrio , Poluentes do Solo , Adulto , Criança , Humanos , Mercúrio/análise , Taiwan , Poluição Ambiental/análise , Solo/química , Medição de Risco , Rim , Poluentes do Solo/análise , Monitoramento Ambiental
3.
Artigo em Inglês | MEDLINE | ID: mdl-35162543

RESUMO

The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project-Monsoon Asia and Oceania Networking Group (IGAC-MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting authorities in formulating targeted strategies to reduce severe PM2.5 pollution and health risks in this region. The PM2.5 research gaps that could be filled by LCS application are identified in five categories: source evaluation, especially for the distinctive sources in the SEA countries; hot spot investigation; peak exposure assessment; exposure-health evaluation on acute health impacts; and short-term standards. The affordability of LCS, methodology transferability, international collaboration, and stakeholder engagement are keys to success in such transdisciplinary PM2.5 research. Unique contributions to the international science community and challenges with LCS application in PM2.5 research in SEA are also discussed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Ásia , Sudeste Asiático , Monitoramento Ambiental/métodos , Material Particulado/análise , Pesquisa
4.
Sci Rep ; 11(1): 17817, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497296

RESUMO

Wind turbines generate low-frequency noise (LFN, 20-200 Hz), which poses health risks to nearby residents. This study aimed to assess heart rate variability (HRV) responses to LFN exposure and to evaluate the LFN exposure (dB, LAeq) inside households located near wind turbines. Thirty subjects living within a 500 m radius of wind turbines were recruited. The field campaigns for LFN (LAeq) and HRV monitoring were carried out in July and December 2018. A generalized additive mixed model was employed to evaluate the relationship between HRV changes and LFN. The results suggested that the standard deviations of all the normal to normal R-R intervals were reduced significantly, by 3.39%, with a 95% CI = (0.15%, 6.52%) per 7.86 dB (LAeq) of LFN in the exposure range of 38.2-57.1 dB (LAeq). The indoor LFN exposure (LAeq) ranged between 30.7 and 43.4 dB (LAeq) at a distance of 124-330 m from wind turbines. Moreover, households built with concrete and equipped with airtight windows showed the highest LFN difference of 13.7 dB between indoors and outdoors. In view of the adverse health impacts of LFN exposure, there should be regulations on the requisite distances of wind turbines from residential communities for health protection.


Assuntos
Exposição Ambiental , Frequência Cardíaca/fisiologia , Ruído , Centrais Elétricas , Adulto , Idoso , Feminino , Nível de Saúde , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Environ Sci Technol ; 55(17): 11805-11813, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34388337

RESUMO

This study focuses on estimating the probabilistic soil and dust ingestion rates for children under 3 years old by the Stochastic Human Exposure and Dose Simulation Soil and Dust (SHEDS-S/D) model developed by the U.S. Environmental Protection Agency. The health risk of children's exposure to heavy metals through soil and dust ingestion and dermal absorption was then assessed in three exposure scenarios. In the exposure scenario of direct contact with soil, the average soil and dust ingestion rates for children aged 24 to 36 months were 90.7 and 29.8 mg day-1 in the sand and clay groups, respectively. Hand-to-mouth soil ingestion was identified as the main contributor to soil and dust ingestion rates, followed by hand-to-mouth dust ingestion and object-to-mouth dust ingestion. The soil-to-skin adherence factor was the most influential factor increasing the soil and dust ingestion rate based on a sensitivity analysis in the SHEDS-S/D model. Furthermore, the modeled soil and dust ingestion rates based on the SHEDS-S/D model were coincident with results calculated by the tracer element method. Our estimates highlight the soil ingestion rate as the key parameter increasing the risk for children, while a higher frequency of hand washing could potentially reduce the risk.


Assuntos
Poeira , Solo , Criança , Pré-Escolar , Poeira/análise , Ingestão de Alimentos , Exposição Ambiental/análise , Humanos , Medição de Risco , Taiwan
6.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283134

RESUMO

Smartwatches are being increasingly used in research to monitor heart rate (HR). However, it is debatable whether the data from smartwatches are of high enough quality to be applied in assessing the health impacts of air pollutants. The objective of this study was to assess whether smartwatches are useful complements to certified medical devices for assessing PM2.5 health impacts. Smartwatches and medical devices were used to measure HR for 7 and 2 days consecutively, respectively, for 49 subjects in 2020 in Taiwan. Their associations with PM2.5 from low-cost sensing devices were assessed. Good correlations in HR were found between smartwatches and certified medical devices (rs > 0.6, except for exercise, commuting, and worshipping). The health damage coefficients obtained from smartwatches (0.282% increase per 10 µg/m3 increase in PM2.5) showed the same direction, with a difference of only 8.74% in magnitude compared to those obtained from certified medical devices. Additionally, with large sample sizes, the health impacts during high-intensity activities were assessed. Our work demonstrates that smartwatches are useful complements to certified medical devices in PM2.5 health assessment, which can be replicated in developing countries.


Assuntos
Poluentes Atmosféricos , Avaliação do Impacto na Saúde , Poluentes Atmosféricos/análise , Frequência Cardíaca , Humanos , Material Particulado/análise , Taiwan
7.
Environ Pollut ; 277: 116761, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640827

RESUMO

Few studies have investigated the effect of personal PM2.5 and PM1 exposures on heart rate variability (HRV) for a community-based population, especially in Asia. This study evaluates the effects of personal PM2.5 and PM1 exposure on HRV during two seasons for 35 healthy adults living in an urban community in Taiwan. The low-cost sensing (LCS) devices were used to monitor the PM levels and HRV, respectively, for two consecutive days. The mean PM2.5 and PM1 concentrations were 13.7 ± 11.4 and 12.7 ± 10.5 µg/m3 (mean ± standard deviation), respectively. Incense burning was the source that contributed most to the PM2.5 and PM1 concentrations, around 9.2 µg/m3, while environmental tobacco smoke exposure had the greatest impacts on HRV indices, being associated with the highest decrease of 20.2% for high-frequency power (HF). The results indicate that an increase in PM2.5 concentrations of one interquartile range (8.7 µg/m3) was associated with a change of -1.92% in HF and 1.60% in ratio of LF to HF power (LF/HF). Impacts on HRV for PM1 were similar to those for PM2.5. An increase in PM1 concentrations of one interquartile range (8.7 µg/m3) was associated with a change of -0.645% in SDNN, -1.82% in HF and 1.54% in LF/HF. Stronger immediate and lag effects of PM2.5 exposure on HRV were observed in overweight/obese subjects (body mass index (BMI) ≥24 kg/m2) compared to the normal-weight group (BMI <24 kg/m2). These results indicate that even low-level PM concentrations can still cause changes in HRV, especially for the overweight/obese population.


Assuntos
Poluentes Atmosféricos , Dispositivos Eletrônicos Vestíveis , Adulto , Poluentes Atmosféricos/análise , Ásia , Exposição Ambiental , Frequência Cardíaca , Humanos , Material Particulado/análise , Taiwan
8.
Indoor Air ; 31(3): 755-768, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33047373

RESUMO

The intensity, frequency, duration, and contribution of distinct PM2.5 sources in Asian households have seldom been assessed; these are evaluated in this work with concurrent personal, indoor, and outdoor PM2.5 and PM1 monitoring using novel low-cost sensing (LCS) devices, AS-LUNG. GRIMM-comparable observations were acquired by the corrected AS-LUNG readings, with R2 up to 0.998. Twenty-six non-smoking healthy adults were recruited in Taiwan in 2018 for 7-day personal, home indoor, and home outdoor PM monitoring. The results showed 5-min PM2.5 and PM1 exposures of 11.2 ± 10.9 and 10.5 ± 9.8 µg/m3 , respectively. Cooking occurred most frequently; cooking with and without solid fuel contributed to high PM2.5 increments of 76.5 and 183.8 µg/m3 (1 min), respectively. Incense burning had the highest mean PM2.5 indoor/outdoor (1.44 ± 1.44) ratios at home and on average the highest 5-min PM2.5 increments (15.0 µg/m3 ) to indoor levels, among all single sources. Certain events accounted for 14.0%-39.6% of subjects' daily exposures. With the high resolution of AS-LUNG data and detailed time-activity diaries, the impacts of sources and ventilations were assessed in detail.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental/instrumentação , Material Particulado , Adulto , Poluentes Atmosféricos , Culinária , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Estações do Ano , Taiwan , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...