Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 97: 104038, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528214

RESUMO

Although microplastics (MPs) have become a global issue, the biodistribution and toxicities of MPs were still unclear. In this study, c57BL/6 mice were treated with submicron-sized MPs labeled with Nile red fluorescence by oral gavage three times a week for four consecutive weeks. Flow cytometry and microscopy technique were used to examine the concentration and distribution of MPs in various tissues and biofluids. The oxidative stress and inflammation were assessed via liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Submicron-sized MP signals were found in the intestines, liver, spleen, kidney, lungs, blood, and urine of mice after MP exposure. Increased oxidative stress in mouse urine and elevated inflammatory cytokines in mouse kidney were also recorded. In conclusion, flow cytometry is a useful tool for examining the number concentrations of MPs. Increased oxidative stress and inflammation after MP treatment indicates that the toxicity of MP warrants further investigation.


Assuntos
Plásticos , Poluentes Químicos da Água , Camundongos , Animais , Distribuição Tecidual , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Langmuir ; 33(2): 645-651, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27966968

RESUMO

In this study, a theoretical model was developed to analyze the stability of liquid elbow patterns and validated by experiments. An exemplar system of ethylene glycol continuously deposited on polyethylene terephthalate (PET) was used to study the effects of printing parameters on bulge formation near the elbow corners. In the elbow region, because of the capillary pressure differences, liquids flowed into the concave elbow corner and formed bulges easily after being printed. However, the bulge formation disappeared when the elbow angle is >90°. A simple model based on surface energy analysis was proposed to explain the bulging phenomenon and can successfully predict bulge sizes at steady state. A stability diagram was also calculated to map out the stable regimes. With the guidance of the stability diagram, stable elbow lines without any bulges can be printed with various angles by controlling the thickness of liquids. In summary, this stabilization strategy in this study is effective to maintain the fidelity of printed liquid patterns and provides useful guidelines for printed electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...