Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 91, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637531

RESUMO

Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unraveling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects in the luminescence emanating from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modeling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.

2.
Nanophotonics ; 11(17): 3969-3980, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36059378

RESUMO

Reconfigurable metalenses are compact optical components composed by arrays of meta-atoms that offer unique opportunities for advanced optical systems, from microscopy to augmented reality platforms. Although poorly explored in the context of reconfigurable metalenses, thermo-optical effects in resonant silicon nanoresonators have recently emerged as a viable strategy to realize tunable meta-atoms. In this work, we report the proof-of-concept design of an ultrathin (300 nm thick) and thermo-optically reconfigurable silicon metalens operating at a fixed, visible wavelength (632 nm). Importantly, we demonstrate continuous, linear modulation of the focal-length up to 21% (from 165 µm at 20 °C to 135 µm at 260 °C). Operating under right-circularly polarized light, our metalens exhibits an average conversion efficiency of 26%, close to mechanically modulated devices, and has a diffraction-limited performance. Overall, we envision that, combined with machine-learning algorithms for further optimization of the meta-atoms, thermally reconfigurable metalenses with improved performance will be possible. Also, the generality of this approach could offer inspiration for the realization of active metasurfaces with other emerging materials within field of thermo-nanophotonics.

3.
J Chem Phys ; 152(1): 014705, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914755

RESUMO

Finite element simulations through COMSOL Multiphysics were used to optically model systems composed of Mo dichalcogenide layers (MoTe2 and MoS2) and Au nanoparticles (spherical dimers, nanorods, and nanostars) to understand how their fundamental material properties as well as their interactions affect the photocurrent response. The absorption cross sections of the various Au nanoparticles linearly increase with respect to their increasing dimensions, hence being ideal tunable systems for the enhancement of the electric field in the dichalcogenide layers under visible and near infrared. The photocurrent through the MoTe2 and MoS2 substrates was enhanced by the addition of Au nanoparticles when the plasmonic response was localized in the area of the particle in contact with the substrate. Based on these findings, the use of Au nanoparticles can greatly improve the unique photocurrent properties of Mo dichalcogenides; however, nanoparticle orientation and size must be considered to tune the enhancement at the specific wavelengths. This computational work provides useful design rules for the use of plasmonic nanomaterials in photocatalytic and photocurrent enhancement of transition metal dichalcogenides.

4.
Nanoscale ; 11(40): 18662-18671, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584591

RESUMO

Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags, phototherapeutic agents, and hot electron-based photocatalytic platforms. Despite having emerged as the cornerstone among plasmonic nanoparticles with respect to resonant strength and tunability, some well-known limitations have hampered their technological implementation. Herein we tackle these recognized intrinsic weaknesses, which stem from the complex, and thus computationally untreatable morphology and the limited sample monodispersity, by proposing a novel 6-spike nanostar, which we have computationally studied and synthetically realized, as the epitome of 3D plasmonic nanoantenna with wide range plasmonic tunability. Our concerted computational and experimental effort shows that these nanostars combine the unique advantages of nanostructures fabricated from the top-down and those synthesized from the bottom-up, showcasing a unique plasmonic response that remains largely unaltered on going from the single particle to the ensemble. Furthermore, they display multiple, well-separated, narrow resonances, the most intense of which extends in space much farther than that observed before for any plasmonic mode localized around a colloidal nanostructure. Importantly, the unique close correlation between morphology and plasmonic response leads the resonant modes of these particles to be tunable between 600 and 2000 nm, a unique feature that could find relevance in cutting edge technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...