Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843278

RESUMO

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Assuntos
Antígenos de Diferenciação , Antígeno CD47 , Imunoconjugados , Receptores Imunológicos , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Animais , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Humanos , Camundongos , Imunoconjugados/farmacologia , Antígenos de Diferenciação/imunologia , Linhagem Celular Tumoral , Feminino , Trastuzumab/farmacologia , Inibidores da Topoisomerase I/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos BALB C
2.
Sci Rep ; 11(1): 22098, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764369

RESUMO

Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Mamíferos/imunologia , Ligação Proteica/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Células HEK293 , Células HeLa , Humanos , Células K562 , Biblioteca de Peptídeos
3.
Oncotarget ; 9(13): 11209-11226, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541408

RESUMO

The immunosuppressive tumor microenvironment is a hallmark of cancer. Myeloid-derived suppressor cells (MDSCs) are CD11b+ Gr-1+ tumor-infiltrating immature myeloid cells that strongly mediate tumor immunosuppression. The CD11b+ Gr-1+ cells are a heterogeneous cell population, and the impacts of each subpopulation on tumor progression are not yet completely understood. In the present study, we identified a novel subpopulation of CD11b+ Gr-1+ cells from murine lung carcinoma tumors according to their strongly adherent abilities. Although strong adherent activity is a unique property of macrophages, their marker expression patterns are similar to those of MDSCs; thus, we named this novel subpopulation MDSC-like adherent cells (MLACs). Unlike known MDSCs, MLACs lack the ability to suppress cytotoxic T lymphocytes and differentiate into tumor-associated macrophages (TAMs), but could still directly facilitate tumor growth and angiogenesis through secreting CCL2, CXCL1/2/5, PAI-1, MMPs, and VEGFA. Furthermore, MLACs recruited MDSCs via the secretion of CCL2/5 and CXCL1/2/5, thereby enhancing the immunosuppressive tumor microenvironment and promoting TAMs-mediated tumor progression. Our findings suggest that MLACs may function as an initiator of the immunosuppressive tumor microenvironment and highlight a new therapeutic target to prevent the onset or delay malignant progression.

4.
Protein Sci ; 26(3): 452-463, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27879017

RESUMO

Vasohibins (VASH1 and VASH2) are recently identified regulators of angiogenesis and cancer cell functions. They are secreted proteins without any classical secretion signal sequences, and are thought to be secreted instead via an unconventional protein secretion (UPS) pathway in a small vasohibin-binding protein (SVBP)-dependent manner. However, the precise mechanism of SVBP-dependent UPS is poorly understood. In this study, we identified a novel UPS regulatory system in which essential domain architecture (VASH-PS) of VASHs, comprising regions VASH191-180 and VASH280-169 , regulate the cytosolic punctate structure formation in the absence of SVBP. We also demonstrate that SVBP form a complex with VASH1 through the VASH1274-282 (SIa), VASH1139-144 (SIb), and VASH1133-137 (SIc), leading to the dispersion in the cytosol and extracellular release of VASH1. The amino acid sequences of VASH-SIa and VASH-PS, containing SIb and SIc, are highly conserved among VASH family members in vertebrates, suggesting that SVBP-dependent UPS may be common within the VASH family. This novel UPS regulatory system may open up new avenues for understanding fundamental protein secretion in vertebrates.


Assuntos
Proteínas Angiogênicas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Angiogênicas/química , Proteínas Angiogênicas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citosol/química , Citosol/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Domínios Proteicos
5.
Stud Health Technol Inform ; 217: 805-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26294567

RESUMO

ALS patients usually use augmentative and alternative communication tools to communicate with other people, but the assessment tools, including the selection of an input switch, are very difficult to operate. In this study, we developed a novel device to measure the physical ability of patients to operate the input switch with a push lever. The study focused on the amount of pushing and the power required to operate the input switch, and the effectiveness was verified.


Assuntos
Esclerose Lateral Amiotrófica/psicologia , Auxiliares de Comunicação para Pessoas com Deficiência , Atividades Cotidianas , Adulto , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/terapia , Auxiliares de Comunicação para Pessoas com Deficiência/normas , Feminino , Humanos
6.
J Control Release ; 201: 14-21, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25592386

RESUMO

Cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTDs), can mediate the cellular uptake of a wide range of macromolecules including peptides, proteins, oligonucleotides, and nanoparticles, and thus have received considerable attention as a promising method for drug delivery in vivo. Here, we report that CPP/PTDs facilitate the extravasation of fused proteins by binding to neuropilin-1 (NRP1), a vascular endothelial growth factor (VEGF) co-receptor expressed on the surface of endothelial and some tumor cells. In this study, we examined the capacity of the amphipathic and cationic CPP/PTDs, PTD-3 and TAT-PTD, respectively, to bind cells in vitro and accumulate in xenograft tumors in vivo. Notably, these functions were significantly suppressed by pre-treatment with NRP1-neutralizing Ab. Furthermore, co-injection of iRGD, a cyclic peptide known to increase NRP1-dependent vascular permeability, significantly reduced CPP/PTD tumor delivery. This data demonstrates a mechanism by which NRP1 promotes the extravasation of CPP/PTDs that may open new avenues for the development of more efficient CPP/PTD delivery systems.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Neoplasias/metabolismo , Neuropilina-1/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Produtos do Gene tat/administração & dosagem , Produtos do Gene tat/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Oligopeptídeos/administração & dosagem , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química
7.
PLoS One ; 9(8): e103397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084350

RESUMO

Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Técnicas de Visualização da Superfície Celular , Proteínas de Fluorescência Verde/genética , Humanos , Modelos Moleculares , Mutação , Neoplasias/metabolismo , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...