Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(1): 285-299, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36573838

RESUMO

High-resolution measurements of microwave dielectric relaxation and Raman spectroscopies for waters in double-stranded (ds) 10-mer DNA solution revealed the presence of hyper-mobile water (HMW) and a marked OH stretching band appearing in the range from 2500 to 3100 cm-1, here called the LA band, at the low wavenumber tail of the major OH stretching band of water. Quantitation of the Raman scattering intensity for ds 10-mer DNA in phosphate or tris(hydroxymethyl)aminomethane (TRIS) buffers showed that the LA band was formed by 2000-3000 water molecules per ds 10-mer DNA, indicating collective OH stretching vibrations of water molecules around the backbone phosphate oxygen atoms. The LA band intensity of ds 10-mer DNA in 10 mM TRIS increased and decreased by 30% with the addition of 2 mM MgCl2 and 2 mM CaCl2, respectively. The LA band intensity and the effect of adding Mg(II) or Ca(II) ions to the band intensity were maintained in the presence of 0.14 M KCl; however, the changes induced by the divalent cations were reduced by half. Molecular dynamics calculations of water molecules around the backbone phosphate groups of ds 10-mer DNA indicate the presence of high-density water and broad regions of fluctuating water density, suggesting that they correspond to HMW and the LA band, respectively.


Assuntos
Fosfatos , Água , Fosfatos/química , Água/química , Análise Espectral Raman , Simulação de Dinâmica Molecular , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...