Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 70(2): 201-214, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32816022

RESUMO

This study was aimed to verify the cellular interplay between vascular endothelial cells and surrounding cells in the chondro-osseous junction of murine tibiae. Many CD31-positive endothelial cells accompanied with Dolichos Biflorus Agglutinin lectin-positive septoclasts invaded into the hypertrophic zone of the tibial epiphyseal cartilage. MMP9 immunoreactive cytoplasmic processes of vascular endothelial cells extended into the transverse partitions of cartilage columns. In contrast, septoclasts included several large lysosomes which indicate the incorporation of extracellular matrices despite no immunopositivity for F4/80-a hallmark of macrophage/monocyte lineage. In addition, septoclasts were observed in c-fos-/- mice but not in Rankl-/- mice. Unlike c-fos-/- mice, Rankl-/- mice showed markedly expanded hypertrophic zone and the irregular shape of the chondro-osseous junction. Immunoreactivity of platelet-derived growth factor-bb, which involved in angiogenic roles in the bone, was detected in not only osteoclasts but also septoclasts at the chondro-osseous junction. Therefore, septoclasts appear to assist the synchronous vascular invasion of endothelial cells at the chondro-osseous junction. Vascular endothelial cells adjacent to the chondro-osseous junction possess endomucin but not EphB4, whereas those slightly distant from the chondro-osseous junction were intensely positive for both endomucin and EphB4, while being accompanied with ephrinB2-positive osteoblasts. Taken together, it is likely that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. MINI-ABSTRACT: Our original article demonstrated that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. (A figure that best represents your paper is Fig. 5c).


Assuntos
Células Endoteliais/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Osteogênese/fisiologia , Tíbia/citologia , Animais , Becaplermina/metabolismo , Osso e Ossos/citologia , Efrina-B2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Fagócitos/citologia , Lectinas de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Receptor EphB4/metabolismo
2.
Jpn Dent Sci Rev ; 53(2): 34-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28479934

RESUMO

Matrix vesicle-mediated mineralization is an orchestrated sequence of ultrastructural and biochemical events that lead to crystal nucleation and growth. The influx of phosphate ions into the matrix vesicle is mediated by several proteins such as TNAP, ENPP1, Pit1, annexin and so forth. The catalytic activity of ENPP1 generates pyrophosphate (PPi) using extracellular ATPs as a substrate, and the resultant PPi prevents crystal overgrowth. However, TNAP hydrolyzes PPi into phosphate ion monomers, which are then transported into the matrix vesicle through Pit1. Accumulation of Ca2+ and PO43- inside matrix vesicles then induces crystalline nucleation, with calcium phosphate crystals budding off radially, puncturing the matrix vesicle's membrane and finally growing out of it to form mineralized nodules.

3.
Biomed Res ; 38(2): 123-134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28442663

RESUMO

Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos-/- or c-src-/- mice. Osteopetrotic c-fos deficient (c-fos-/-) mice have no osteoclasts, while c-src deficient (c-src-/-) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos-/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src-/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src-/- bone matrix. This indicates the possibility that in c-src-/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src-/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.


Assuntos
Osteoblastos/fisiologia , Osteoclastos/metabolismo , Quinases da Família src/genética , Animais , Biomarcadores , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Proteína Tirosina Quinase CSK , Calcificação Fisiológica , Comunicação Celular , Microambiente Celular , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Osteoblastos/ultraestrutura , Osteoclastos/ultraestrutura , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinases da Família src/deficiência
4.
J Histochem Cytochem ; 65(4): 207-221, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122194

RESUMO

To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.


Assuntos
Glucuronidase/metabolismo , Periodonto/metabolismo , Fosfatos/deficiência , Animais , Dieta , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/genética , Histocitoquímica , Proteínas Klotho , Masculino , Mandíbula/metabolismo , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Ligamento Periodontal/metabolismo , Fosfatos/administração & dosagem , Fosfatos/sangue
5.
J Histochem Cytochem ; 64(10): 601-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27666429

RESUMO

Minodronate is highlighted for its marked and sustained effects on osteoporotic bones. To determine the duration of minodronate's effects, we have assessed the localization of the drug in mouse bones through isotope microscopy, after labeling it with a stable nitrogen isotope ([(15)N]-minodronate). In addition, minodronate-treated bones were assessed by histochemistry and transmission electron microscopy (TEM). Eight-week-old male ICR mice received [(15)N]-minodronate (1 mg/kg) intravenously and were sacrificed after 3 hr, 24 hr, 1 week, and 1 month. Isotope microscopy showed that [(15)N]-minodronate was present mainly beneath osteoblasts rather than nearby osteoclasts. At 3 hr after minodronate administration, histochemistry and TEM showed osteoclasts with well-developed ruffled borders. However, osteoclasts were roughly attached to the bone surfaces and did not feature ruffled borders at 24 hr after minodronate administration. The numbers of tartrate-resistant acid phosphatase-positive osteoclasts and alkaline phosphatase-reactive osteoblastic area were not reduced suddenly, and apoptotic osteoclasts appeared in 1 week and 1 month after the injections. Von Kossa staining demonstrated that osteoclasts treated with minodronate did not incorporate mineralized bone matrix. Taken together, minodronate accumulates in bone underneath osteoblasts rather than under bone-resorbing osteoclasts; therefore, it is likely that the minodronate-coated bone matrix is resistant to osteoclastic resorption, which results in a long-lasting and bone-preserving effect.


Assuntos
Conservadores da Densidade Óssea/análise , Difosfonatos/análise , Fêmur/química , Imidazóis/análise , Animais , Isótopos de Carbono , Contagem de Células , Fêmur/citologia , Masculino , Camundongos Endogâmicos ICR , Microscopia/métodos , Isótopos de Nitrogênio , Osteoblastos/citologia , Osteoclastos/citologia
6.
Biomed Res ; 37(2): 141-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27108883

RESUMO

We employed a well-standardized murine rib fracture model to assess the distribution, in the cortical bone, of three important osteocyte-derived molecules-dentine matrix protein 1 (DMP1), sclerostin and fibroblast growth factor 23 (FGF 23). Two days after the fracture, the periosteum thickened, and up to the seventh day post-fracture, the cortical surfaces were promoting neoformation of two tissue types depending on the distance from the fracture site: chondrogenesis was taking place near the fracture, and osteogenesis distant from it. The cortical bones supporting chondrogenesis featured several empty lacunae, while in the ones underlying newly-formed woven bone, empty lacunae were hardly seen. DMP1-immunopositive osteocytic lacunae and canaliculi were seen both close and away from the fracture. In contrast, the region close to the fracture had only few sclerostin- and FGF23-immunoreactive osteocytes, whereas the distant region revealed many osteocytes immunopositive for these markers. Mature cortical bone encompassing the native cortical bone was observed at two-, three- and four-weeks post-fracture, and the distribution of DMP1, sclerostin and FGF23 appeared to have returned to normal. In summary, early stages of fracture healing seem to be important for triggering chondrogenesis and osteogenesis that may be regulated by osteocytes via their secretory molecules.


Assuntos
Consolidação da Fratura/fisiologia , Osteócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores , Condrogênese , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Osteogênese , Transporte Proteico , Costelas , Fatores de Tempo
7.
Parasitol Int ; 65(6 Pt B): 750-759, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27091546

RESUMO

Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank.


Assuntos
Blastocystis/classificação , Blastocystis/genética , DNA de Protozoário/genética , Filogenia , Animais , Blastocystis/isolamento & purificação , DNA Ribossômico/genética , Bases de Dados de Ácidos Nucleicos , Humanos , Insetos/parasitologia
8.
Clin Calcium ; 26(5): 677-82, 2016 May.
Artigo em Japonês | MEDLINE | ID: mdl-27117612

RESUMO

During endochondral bone development, the longitudinal vascular invasion into cartilage primordium initially takes place, by which mineralized cartilage matrix would be exposed into bone. Thereafter, osteogenic cells differentiate into mature osteoblasts to deposit new bone onto the exposed mineralized cartilage. New bone formation at the chondro-osseous junction appears to be achieved by the process of modeling, but not by bone remodeling based on cellular coupling between osteoclasts and osteoblasts. Recently, a specific vessel subtype in bone was reported:Vascular endothelial cells close to the chondro-oseous junction showed intense CD31/Endomucin(CD31(hi)Emcn(hi), type H), while the endothelial cells of sinusoidal vessels in diaphysis revealed only weak CD31/Endomucin(CD31(lo)Emcnlo, type L). It is suggested crucial roles of endothelial HIF in controlling bone angiogenesis, type H vessel abundance, endothelial growth factor expression and osteogenesis.


Assuntos
Osso e Ossos/irrigação sanguínea , Cartilagem/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/metabolismo , Osteoclastos/citologia , Osteogênese/fisiologia , Animais , Osso e Ossos/metabolismo , Cartilagem/patologia , Células Endoteliais/metabolismo , Humanos , Osteoclastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...