Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 91(4): 1763-1782, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27604104

RESUMO

Dioxins cause various toxic effects through the aryl hydrocarbon receptor (AHR) in vertebrates, with dramatic species and strain differences in susceptibility. Although inbred mouse strains C3H/HeJ-lpr/lpr (C3H/lpr) and MRL/MpJ-lpr/lpr (MRL/lpr) are known as dioxin-sensitive and dioxin-resistant mice, respectively, the molecular mechanism underlying this difference remains unclear. The difference in the hepatic proteome of the two mouse strains treated with vehicle or 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) was investigated by a proteomic approach of two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF). To confirm the strain-difference in response to TBDD treatment, cytochrome P450 (CYP) 1A1 and 1A2 protein levels were measured in both strains. A dose of 10 µg/kg body weight of TBDD induced hepatic CYP1A1 and CYP1A2 expression in both strains, but the expression levels of both CYP1A proteins were higher in C3H/lpr mice than in MRL/lpr mice, supporting that C3H/lpr mice are more sensitive to dioxins than MRL/lpr mice. Proteins that were more induced or suppressed by TBDD treatment in C3H/lpr mice were successfully identified by 2-DE and MALDI-TOF/TOF, including proteins responsible for AHR activation through production of endogenous ligands such as aspartate aminotransferase, indolethylamine N-methyltransferase, and aldehyde dehydrogenases, as well as proteins reducing oxidative stress, such as superoxide dismutase and peroxiredoxins. Taken together, our results provide insights into the molecular mechanism underlying the high dioxin susceptibility of the C3H/lpr strain, in which AHR activation by TBDD is more prompted by the production of endogenous ligands, but the adaptation to oxidative stress is also acquired.


Assuntos
Dioxinas/toxicidade , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Animais , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos MRL lpr , Proteoma/efeitos dos fármacos , Proteômica/métodos , Receptores de Hidrocarboneto Arílico/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...