Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176992

RESUMO

The impact of 5G communication is expected to be widespread and transformative. It promises to provide faster mobile broadband speeds, lower latency, improved network reliability and capacity, and more efficient use of wireless technologies. The Schottky diode, a BN/GaN layered composite contacting bulk aluminum, is theoretically plausible to harvest wireless energy above X-band. According to our first principle calculation, the insertion of GaN layers dramatically influences the optical properties of the layered composite. The relative dielectric constant of BN/GaN layered composite as a function of layer-to-layer separation is investigated where the optimized dielectric constant is ~2.5. To push the dielectric constant approaching ~1 for high-speed telecommunication, we upgrade our BN-based Schottky diode via nanostructuring, and we find that the relative dielectric constant of BN monolayer (semiconductor side) can be minimized to ~1.5 only if it is deposited on an aluminum monolayer (metal side). It is rare to find a semiconductor with a dielectric constant close to 1, and our findings may push the cut-off frequency of the Al/BN-based rectenna to the high-band 5G network.

2.
Sci Rep ; 8(1): 13002, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158709

RESUMO

Conventional core-shell polymer nanoparticles usually exhibit a rapid release rate with their release kinetics mainly adjusted through changing composition of the polymer shells, limiting their applications for prolonged drug delivery. As a solution to these problems, silica xerogel/polymer core-shell-structured composite nanoparticles have been proposed. Different with our previous work centring on studying process variables, we here focused on investigating the effects of key compositional variables on essential properties of the composite nanoparticles. The drug release profiles (in vitro) were well interpreted by the Baker and Lonsdale model on a predicted two-stage basis. The first stage (<1 day) was well controlled from 18.6% to 45.9%; the second stage (1-14 days) was tailored in a range from 28.7 to 58.2% by changing the composition of the silica xerogel cores and polymeric shells. A substantial achievement was reducing the release rate by more than 40 times compared with that of conventional polymer nanoparticles by virtue of the silica xerogel cores. A semi-empirical model was also established in the first attempt to describe the effects of polymer concentration and drug loading capacity on the size of the composite nanoparticles. All these results indicated that the composite nanoparticles are promising candidates for prolonged drug delivery applications.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Dióxido de Silício/química
3.
Polymers (Basel) ; 10(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960856

RESUMO

A novel bio-adsorbent was fabricated via grafting an amino-terminated hyperbranched polymer (HBP-NH2) onto bagasse cellulose. The morphology and microstructure of the HBP-NH2-grafted bagasse cellulose (HBP-g-BC) were characterized and its adsorption capacity for Cr(VI) ions in aqueous solutions was investigated. The rough surface structure of HBP-g-BC that is beneficial for improving the adsorption capacity was observed by scanning electron microscopy (SEM). The grafting reaction was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. The adsorbent performance was shown to be better with a lower pH value, a higher adsorbent dosage, or a higher initial Cr(VI) concentration. Moreover, the kinetics study revealed that the adsorption behavior followed a pseudo-second-order model. The isotherm results showed that the adsorption data could be well-fitted by the Langmuir, Freundlich, or Temkin models. Moreover, HBP-g-BC could maintain 74.4% of the initial removal rate even after five cycles of regeneration. Thus, the high potential of HBP-g-BC as a bio-adsorbent for heavy metal removal has been demonstrated.

4.
J Mech Behav Biomed Mater ; 71: 262-270, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365543

RESUMO

Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear.


Assuntos
Materiais Biocompatíveis/análise , Durapatita/análise , Nanoestruturas/análise , Poliésteres/análise , Teste de Materiais , Porosidade , Alicerces Teciduais
5.
Mater Sci Eng C Mater Biol Appl ; 42: 746-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063176

RESUMO

Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 µm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications.


Assuntos
Substitutos Ósseos/química , Durapatita/química , Próteses e Implantes , Titânio/química , Ligas , Animais , Substitutos Ósseos/farmacologia , Linhagem Celular , Feminino , Masculino , Teste de Materiais , Camundongos , Micro-Ondas , Coelhos , Tíbia/efeitos dos fármacos , Tíbia/fisiologia
6.
J Mech Behav Biomed Mater ; 22: 41-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23639839

RESUMO

The purpose of this study was to fabricate drug-release nano-composite scaffolds and perform in vitro evaluation of their mechanical properties, bioactivity, biodegradability and drug release behaviors. Porous drug-release poly-d-l-lactide (PDLLA) composite scaffolds filled with different amounts of nano-hydroxyapatite (nano-HAp) were prepared by a technique combining polymer coagulation, cold compression moulding, salt leaching and drug coating. Apatite detected on the scaffolds after exposure to a simulated body fluid showed improvement in bioactivity and the apatite formation ability through the addition of the nano-HAp content in the composites. Nano-HAp incorporation and apatite formation made a positive impact on the mechanical properties of the scaffolds; however, plasticization and degradation of PDLLA had a negative impact. The pH-compensation effect of the composite scaffolds can reduce the risk of chronic inflammation complications. The fabrication method in this study can produce scaffolds with controllable structure, appropriate mechanical properties and degradation rates for cancellous bone repair applications.


Assuntos
Dexametasona/química , Durapatita/química , Teste de Materiais , Fenômenos Mecânicos , Nanocompostos/química , Poliésteres/química , Alicerces Teciduais/química , Materiais Biomiméticos/metabolismo , Líquidos Corporais/metabolismo , Durapatita/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Engenharia Tecidual
7.
Nanotechnology ; 23(47): 475704, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23103878

RESUMO

Water-soluble poly(sodium 4-styrenesulfonate) modified graphene (PSSS-GR) was successfully synthesized via covalently grafting poly(sodium 4-styrenesulfonate) (PSSS) on the surfaces of graphene (GR) nanosheets. The structure of PSSS-GR was investigated with Fourier transform infrared, x-ray photoelectron and Raman spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy and atomic force microscopy. The PSSS chains made the GR nanosheets fully exfoliate into a single-layer structure, and the PSSS layer on GR reached 90 wt%. PSSS chains displayed mutually repulsive effects on promoting GR sheets that were more stable in water. The performances of supercapacitors made of PSSS-GR and unmodified GR electrodes were compared using cyclic voltammetry and galvanostatic charge/discharge techniques. The results showed that PSSS is an effective binder for graphene sheets and can increase the specific capacitance of PSSS-GR based supercapacitors and improve their rate capability. The maximum specific capacitance of the PSSS-GR based supercapacitor was 210 F g(-1) at 5 A g(-1), which was 166% higher than for one made of unmodified graphene electrodes. Electrochemical impedance spectroscopy demonstrated fast ion diffusion in the PSSS-GR electrode structure. PSSS-GR based supercapacitors can fulfil one of the essential requirements for potential electric energy storage applications.

8.
Lasers Med Sci ; 25(3): 309-15, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-18716825

RESUMO

This work attempted to integrate the technologies of computer-aided design and computer-aided manufacture (CAD/CAM) and laser rapid forming (LRF) for the fabrication of the titanium plate of a complete denture. By the combination of laser scan and reverse engineering software, the standard triangulation language (STL)-formatted denture base plate was finally designed and sliced into a sequence of numerical controlled codes. The titanium (Ti) complete denture plate was finally built, layer-by-layer, on the LRF system. To evaluate the quality of fit, a virtual adaptation test that measured and compared the profiles of the laser free formed denture plate and those of the edentulous plaster cast had been conducted, and the mean deviation was found to be 0.34 mm. After traditional dental finishing techniques, a complete denture with a Ti base plate was then made and judged to be acceptable. The CAD/CAM/LRF system is a potential candidate and a new platform for the design and manufacture of custom-made Ti denture plates and restorations.


Assuntos
Desenho Assistido por Computador , Planejamento de Dentadura/métodos , Prótese Total , Lasers , Custos e Análise de Custo , Técnica de Fundição Odontológica , Prótese Total/economia , Humanos , Propriedades de Superfície , Tecnologia Odontológica , Titânio
9.
J Mater Sci Mater Med ; 19(1): 75-81, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17577639

RESUMO

Hydroxyapatite (HA) ceramic has been used in tissue engineering and orthopedics for its good biocompatibility and osteoconductivity. However, its clinical applications are usually limited by the low strength and brittleness. The objective of this research was to develop a new kind of HA composites in which multi-wall carbon nanotubes (MWNTs) were introduced to the HA ceramic matrix to improve the mechanical properties of the resulting composites. A simple chemical wet method was applied to synthesize the HA ceramic particles with the aid of surfactant and ultrasonication technique at normal atmospheric pressure. The morphology and microstructure of the synthesized HA were characterized by XRD and TEM as a function of treatment time. The results showed that the synthesized HA particles are needle-like with a length of 80-160 nm along the (211) direction and an aspect ratio of 5-15. MWNTs were treated with a mixture of nitric acid and sulfuric acid. The HA/MWNT composites were prepared by solution blending. The composites were sintered using a hot-press method. The mechanical properties of the HA/MWNT composites with different volume percentages of MWNTs were examined. The fracture toughness and flexural strength were improved by 50% and 28% separately when the volume percentage of MWNTs reached 7%.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Nanotubos de Carbono/química , Cerâmica/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ácido Nítrico/química , Pressão , Tensoativos/química , Temperatura , Resistência à Tração , Fatores de Tempo , Engenharia Tecidual , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...