Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927779

RESUMO

While ovarian tissue cryopreservation (OTC) is an important fertility preservation option, it has its limitations. Improving OTC and ovarian tissue transplantation (OTT) must include extending the function of reimplanted tissue by reducing the extensive activation of primordial follicles (PMFs) and eliminating the risk of reimplanting malignant cells. To develop a more effective OTT, we must understand the effects of the ovarian microenvironment on folliculogenesis. Here, we describe a method for producing decellularized extracellular matrix (dECM) hydrogels that reflect the protein composition of the ovary. These ovarian dECM hydrogels were engineered to assess the effects of ECM on in vitro follicle growth, and we developed a novel method for selectively removing proteins of interest from dECM hydrogels. Finally, we validated the depletion of these proteins and successfully cultured murine follicles encapsulated in the compartment-specific ovarian dECM hydrogels and these same hydrogels depleted of EMILIN1. These are the first, optically clear, tailored tissue-specific hydrogels that support follicle survival and growth comparable to the "gold standard" alginate hydrogels. Furthermore, depleted hydrogels can serve as a novel tool for many tissue types to evaluate the impact of specific ECM proteins on cellular and molecular behavior.

3.
J Endocr Soc ; 8(6): bvae073, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38698870

RESUMO

The last 20 years have seen substantial improvements in fertility and hormone preservation and restoration technologies for a growing number of cancer survivors. However, further advancements are required to fill the gaps for those who cannot use current technologies or to improve the efficacy and longevity of current fertility and hormone restoration technologies. Ovarian tissue cryopreservation (OTC) followed by ovarian tissue transplantation (OTT) offers those unable to undergo ovarian stimulation for egg retrieval and cryopreservation an option that restores both fertility and hormone function. However, those with metastatic disease in their ovaries are unable to transplant this tissue. Therefore, new technologies to produce good-quality eggs and restore long-term cyclic ovarian function are being investigated and developed to expand options for a variety of patients. This mini-review describes current and near future technologies including in vitro maturation, in vitro follicle growth and maturation, bioprosthetic ovaries, and stem cell applications in fertility restoration research by their proximity to clinical application.

4.
F S Rep ; 4(2): 196-205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37398615

RESUMO

Objective: To study ovarian gross morphologic and subanatomic features across pubertal development. Design: Prospective cohort study. Setting: An academic medical center with specimens collected from 2018-2022. Patients: Tissue was obtained from prepubertal and postpubertal participants (0.19-22.96 years) undergoing ovarian tissue cryopreservation before treatment that put them at a significantly or high increased risk of developing premature ovarian insufficiency. Most participants (64%) had not received chemotherapy at tissue collection. Interventions: None. Main Outcome Measures: Ovaries procured for fertility preservation were weighed and measured. Ovarian tissue fragments released during processing, biopsies used for pathology, and hormone panels were analyzed for gross morphology, subanatomic features, and reproductive hormones. Graphical analysis of best-fit lines determined age at maximum growth velocity. Results: Prepubertal ovaries were significantly (1.4-fold and 2.4-fold) smaller than postpubertal ovaries by length and width and 5.7-fold lighter on average. Length, width, and weight grew in a sigmoidal pattern with age. Prepubertal ovaries were less likely to display a defined corticomedullary junction (53% vs. 77% in postpubertal specimens), less likely to have a tunica albuginea (22% vs. 93% in postpubertal specimens), contained significantly more (9.8-fold) primordial follicles, and contained primordial follicles at significantly deeper depths (2.9-fold) when compared with postpubertal ovaries. Conclusions: Ovarian tissue cryopreservation is a resource to study human ovarian biology and pubertal development. Maximum growth velocity occurs late within the pubertal transition (Tanner 3+) after changes in subanatomic features. This ovarian morphology model adds to foundational knowledge of human ovarian development and supports ongoing transcriptomics research.

6.
Am J Obstet Gynecol ; 228(3): 270-275.e4, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191605

RESUMO

The ovaries are the female gonads that are crucial for reproduction, steroid production, and overall health. Historically, the ovary was broadly divided into regions defined as the cortex, medulla, and hilum. This current nomenclature lacks specificity and fails to consider the significant anatomic variations in the ovary. Recent technological advances in imaging modalities and high-resolution omic analyses have brought about the need for revision of the existing definitions, which will facilitate the integration of generated data and enable the characterization of organ subanatomy and function at the cellular level. The creation of these high-resolution multimodal maps of the ovary will enhance collaboration and communication among disciplines and between clinicians and researchers. Beginning in March 2021, the Pediatric and Adolescent Gynecology Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development invited subject-matter experts to participate in a series of workshops and meetings to standardize ovarian nomenclature and define the organ's features. The goal was to develop a spatially defined and semantically consistent terminology of the ovary to support collaborative, team science-based endeavors aimed at generating reference atlases of the human ovary. The group recommended a standardized, 3-dimensional description of the ovary and an ontological approach to the subanatomy of the ovary and definition of follicles. This new greater precision in nomenclature and mapping will better reflect the ovary's heterogeneous composition and function, support the standardization of tissue collection, facilitate functional analyses, and enable clinical and research collaborations. The conceptualization process and outcomes of the effort, which spanned the better part of 2021 and early 2022, are introduced in this article. The institute and the workshop participants encourage researchers and clinicians to adopt the new systems in their everyday work to advance the overarching goal of improving human reproductive health.


Assuntos
Ginecologia , Ovário , Adolescente , Humanos , Feminino , Criança , Ovário/diagnóstico por imagem , Pelve
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...