Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2401831121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875147

RESUMO

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação às Penicilinas , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética
2.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38746434

RESUMO

Proteins harboring intrinsically disordered regions (IDRs) that lack regular secondary or tertiary structure are abundant across three domains of life. Here, using a deep neural network (DNN)-based method we predict IDRs in the extracytoplasmic proteome of Streptococcus mutans , Streptococcus pyogenes and Streptococcus pneumoniae . We identify a subset of the serine/threonine-rich IDRs and demonstrate that they are O -glycosylated with glucose by a GtrB-like glucosyltransferase in S. pyogenes and S. pneumoniae , and N-acetylgalactosamine by a Pgf-dependent mechanism in S. mutans . Loss of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans . We link this phenotype to a C-terminal IDR of peptidyl-prolyl isomerase PrsA which is protected from proteolytic degradation by O -glycosylation. The IDR length attenuates the efficiency of glycosylation and expression of PrsA. Taken together, our data support a model in which extracytoplasmic IDRs function as dynamic switches of protein homeostasis in streptococci.

3.
J Bacteriol ; 206(4): e0045223, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551342

RESUMO

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Assuntos
Escherichia coli K12 , RNA de Transferência , Humanos , RNA de Transferência/genética , Escherichia coli K12/genética , Bactérias/genética , Metilação , Bactérias Gram-Positivas/genética
4.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38328058

RESUMO

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.

5.
Mol Microbiol ; 120(3): 351-383, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452010

RESUMO

GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP(Spn) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress ΔgpsB or ΔstkP. These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overproduction of MurZ caused by ΔkhpAB mutations suppressed ΔgpsB or ΔstkP phenotypes to varying extents. ΔgpsB and ΔstkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, ΔgpsB and ΔstkP were not suppressed by ΔclpCP, which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB(Spn), is the only essential requirement for StkP-mediated protein phosphorylation in exponentially growing D39 pneumococcal cells.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Fosforilação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Mutação
6.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034771

RESUMO

GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn ) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP( Spn ) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress Δ gpsB or Δ stkP . These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overexpression of MurZ caused by Δ khpAB mutations suppressed Δ gpsB or Δ stkP phenotypes to varying extents. Δ gpsB and Δ stkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, Δ gpsB and Δ stkP were not suppressed by Δ clpCP , which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB( Spn ), is the only essential requirement for protein phosphorylation in exponentially growing D39 pneumococcal cells.

7.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38187551

RESUMO

The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance: The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.

8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475211

RESUMO

The peptidoglycan cell wall is a macromolecular structure that encases bacteria and is essential for their survival. Proper assembly of the cell wall requires peptidoglycan synthases as well as membrane-bound cleavage enzymes that control where new peptidoglycan is made and inserted. Previous studies have shown that two membrane-bound proteins in Streptococcus pneumoniae, here named MpgA and MpgB, are important in maintaining cell wall integrity. MpgA was predicted to be a lytic transglycosylase based on its homology to Escherichia coli MltG, while the enzymatic activity of MpgB was unclear. Using nascent peptidoglycan substrates synthesized in vitro from the peptidoglycan precursor Lipid II, we report that both MpgA and MpgB are muramidases. We show that replacing a single amino acid in E. coli MltG with the corresponding amino acid from MpgA results in muramidase activity, allowing us to predict from the presence of this amino acid that other putative lytic transglycosylases actually function as muramidases. Strikingly, we report that MpgA and MpgB cut nascent peptidoglycan at different positions along the sugar backbone relative to the reducing end, with MpgA producing much longer peptidoglycan oligomers. We show that the cleavage site selectivity of MpgA is controlled by the LysM-like subdomain, which is required for its full functionality in cells. We propose that MltG's ability to complement the loss of MpgA in S. pneumoniae despite performing different cleavage chemistry is because it can cleave nascent peptidoglycan at the same distance from the lipid anchor.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Glicosídeo Hidrolases/metabolismo , Streptococcus pneumoniae/metabolismo , Substituição de Aminoácidos , Sequência de Carboidratos , Hidrólise , Peptidoglicano/química , Peptidoglicano/metabolismo
9.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601068

RESUMO

Posttranscriptional gene regulation often involves RNA-binding proteins that modulate mRNA translation and/or stability either directly through protein-RNA interactions or indirectly by facilitating the annealing of small regulatory RNAs (sRNAs). The human pathogen Streptococcus pneumoniae D39 (pneumococcus) does not encode homologs to RNA-binding proteins known to be involved in promoting sRNA stability and function, such as Hfq or ProQ, even though it contains genes for at least 112 sRNAs. However, the pneumococcal genome contains genes for other RNA-binding proteins, including at least six S1 domain proteins: ribosomal protein S1 (rpsA), polynucleotide phosphorylase (pnpA), RNase R (rnr), and three proteins with unknown functions. Here, we characterize the function of one of these conserved, yet uncharacterized, S1 domain proteins, SPD_1366, which we have renamed CvfD (conserved virulence factor D), since loss of the protein results in attenuation of virulence in a murine pneumonia model. We report that deletion of cvfD impacts the expression of 144 transcripts, including the pst1 operon, encoding phosphate transport system 1 in S. pneumoniae We further show that CvfD posttranscriptionally regulates the PhoU2 master regulator of the pneumococcal dual-phosphate transport system by binding phoU2 mRNA and impacting PhoU2 translation. CvfD not only controls expression of phosphate transporter genes but also functions as a pleiotropic regulator that impacts cold sensitivity and the expression of sRNAs and genes involved in diverse cellular functions, including manganese uptake and zinc efflux. Together, our data show that CvfD exerts a broad impact on pneumococcal physiology and virulence, partly by posttranscriptional gene regulation.IMPORTANCE Recent advances have led to the identification of numerous sRNAs in the major human respiratory pathogen S. pneumoniae However, little is known about the functions of most sRNAs or RNA-binding proteins involved in RNA biology in pneumococcus. In this paper, we characterize the phenotypes and one target of the S1 domain RNA-binding protein CvfD, a homolog of general stress protein 13 identified, but not extensively characterized, in other Firmicutes species. Pneumococcal CvfD is a broadly pleiotropic regulator, whose absence results in misregulation of divalent cation homeostasis, reduced translation of the PhoU2 master regulator of phosphate uptake, altered metabolism and sRNA amounts, cold sensitivity, and attenuation of virulence. These findings underscore the critical roles of RNA biology in pneumococcal physiology and virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Resposta ao Choque Frio , Fosfatos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Infecções Pneumocócicas/microbiologia , Proteínas Ribossômicas/metabolismo , Streptococcus pneumoniae/patogenicidade , Virulência
10.
Nat Commun ; 10(1): 261, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651563

RESUMO

Bacterial growth and cell division requires precise spatiotemporal regulation of the synthesis and remodelling of the peptidoglycan layer that surrounds the cytoplasmic membrane. GpsB is a cytosolic protein that affects cell wall synthesis by binding cytoplasmic mini-domains of peptidoglycan synthases to ensure their correct subcellular localisation. Here, we describe critical structural features for the interaction of GpsB with peptidoglycan synthases from three bacterial species (Bacillus subtilis, Listeria monocytogenes and Streptococcus pneumoniae) and suggest their importance for cell wall growth and viability in L. monocytogenes and S. pneumoniae. We use these structural motifs to identify novel partners of GpsB in B. subtilis and extend the members of the GpsB interactome in all three bacterial species. Our results support that GpsB functions as an adaptor protein that mediates the interaction between membrane proteins, scaffolding proteins, signalling proteins and enzymes to generate larger protein complexes at specific sites in a bacterial cell cycle-dependent manner.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Divisão Celular , Cristalografia por Raios X , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Mutagênese , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Peptidoglicano/biossíntese , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
11.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29581408

RESUMO

Antimicrobial peptides (AMPs), including chemokines, are produced during infections to kill pathogenic bacteria. To fill in gaps in knowledge about the sensitivities of Streptococcus pneumoniae and related Streptococcus species to chemokines and AMPs, we performed a systematic, quantitative study of inhibition by chemokine CXCL10 and the AMPs LL-37 and nisin. In a standard Tris-glucose buffer (TGS), all strains assayed lacked metabolic activity, as determined by resazurin (alamarBlue) reduction, and were extremely sensitive to CXCL10 and AMPs (50% inhibitory concentration [IC50], ∼0.04 µM). In TGS, changes in sensitivities caused by mutations were undetectable. In contrast, strains that retained reductive metabolic activity in a different assay buffer (NPB [10 mM sodium phosphate {pH 7.4}, 1% {vol/vol} brain heart infusion {BHI} broth]) were less sensitive to CXCL10 and AMPs than in TGS. In NPB, mutants known to respond to AMPs, such as Δdlt mutants lacking d-alanylation of teichoic acids, exhibited the expected increased sensitivity. S. pneumoniae serotype 2 strain D39 was much (∼10-fold) less sensitive to CXCL10 killing in NPB than serotype 4 strain TIGR4, and the sensitivity of TIGR4 was unaffected by the absence of capsule. Candidate screening of strain D39 revealed that mutants lacking Opp (ΔamiACDEF) oligopeptide permease were significantly more resistant to CXCL10 than the wild-type strain. This increased resistance could indicate that Opp is a target for CXCL10 binding or that it transports CXCL10 into cells. Finally, ΔftsX or ΔftsE mutants of Bacillus subtilis or amino acid changes that interfere with FtsX function in S. pneumoniae did not impart resistance to CXCL10, in contrast to previous results for Bacillus anthracis, indicating that FtsX is not a general target for CXCL10 binding.IMPORTANCES. pneumoniae (pneumococcus) is a human commensal bacterium and major opportunistic respiratory pathogen that causes serious invasive diseases, killing millions of people worldwide annually. Because of its increasing antibiotic resistance, S. pneumoniae is now listed as a "superbug" for which new antibiotics are urgently needed. This report fills in knowledge gaps and resolves inconsistencies in the scientific literature about the sensitivity of S. pneumoniae and related Streptococcus pathogens to chemokines and AMPs. It also reveals a new mechanism by which S. pneumoniae can acquire resistance to chemokine CXCL10. This mechanism involves the Opp (AmiACDEF) oligopeptide transporter, which plays additional pleiotropic roles in pneumococcal physiology, quorum sensing, and virulence. Taking the results together, this work provides new information about the way chemokines kill pneumococcal cells.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Quimiocina CXCL10/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas de Bactérias/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Oligopeptídeos/genética , Infecções Pneumocócicas/imunologia , Sorogrupo , Ovinos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
12.
Mol Microbiol ; 106(5): 793-814, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941257

RESUMO

Suppressor mutations were isolated that obviate the requirement for essential PBP2b in peripheral elongation of peptidoglycan from the midcells of dividing Streptococcus pneumoniae D39 background cells. One suppressor was in a gene encoding a single KH-domain protein (KhpA). ΔkhpA suppresses deletions in most, but not all (mltG), genes involved in peripheral PG synthesis and in the gpsB regulatory gene. ΔkhpA mutations reduce growth rate, decrease cell size, minimally affect shape and induce expression of the WalRK cell-wall stress regulon. Reciprocal co-immunoprecipitations show that KhpA forms a complex in cells with another KH-domain protein (KhpB/JAG/EloR). ΔkhpA and ΔkhpB mutants phenocopy each other exactly, consistent with a direct interaction. RNA-immunoprecipitation showed that KhpA/KhpB bind an overlapping set of RNAs in cells. Phosphorylation of KhpB reported previously does not affect KhpB function in the D39 progenitor background. A chromosome duplication implicated FtsA overproduction in Δpbp2b suppression. We show that cellular FtsA concentration is negatively regulated by KhpA/B at the post-transcriptional level and that FtsA overproduction is necessary and sufficient for suppression of Δpbp2b. However, increased FtsA only partially accounts for the phenotypes of ΔkhpA mutants. Together, these results suggest that multimeric KhpA/B may function as a pleiotropic RNA chaperone controlling pneumococcal cell division.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Crescimento Celular , Parede Celular/metabolismo , Mutação , Peptidoglicano/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Streptococcus pneumoniae/genética , Supressão Genética/genética
13.
mSphere ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070562

RESUMO

The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and virulence. In this work, we identify key transcriptomic and proteomic features of the pneumococcal endogenous oxidative stress response. The thiol peroxidase TpxD plays a critical role in adaptation to endogenous H2O2 and serves to limit protein sulfenylation of glycolytic, capsule, and nucleotide biosynthesis enzymes in S. pneumoniae.

14.
Mol Microbiol ; 100(6): 1039-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26933838

RESUMO

In ellipsoid-shaped ovococcus bacteria, such as the pathogen Streptococcus pneumoniae (pneumococcus), side-wall (peripheral) peptidoglycan (PG) synthesis emanates from midcells and is catalyzed by the essential class B penicillin-binding protein PBP2b transpeptidase (TP). We report that mutations that inactivate the pneumococcal YceG-domain protein, Spd_1346 (renamed MltG), remove the requirement for PBP2b. ΔmltG mutants in unencapsulated strains accumulate inactivation mutations of class A PBP1a, which possesses TP and transglycosylase (TG) activities. The 'synthetic viable' genetic relationship between Δpbp1a and ΔmltG mutations extends to essential ΔmreCD and ΔrodZ mutations that misregulate peripheral PG synthesis. Remarkably, the single MltG(Y488D) change suppresses the requirement for PBP2b, MreCD, RodZ and RodA. Structural modeling and comparisons, catalytic-site changes and an interspecies chimera indicate that pneumococcal MltG is the functional homologue of the recently reported MltG endo-lytic transglycosylase of Escherichia coli. Depletion of pneumococcal MltG or mltG(Y488D) increases sphericity of cells, and MltG localizes with peripheral PG synthesis proteins during division. Finally, growth of Δpbp1a ΔmltG or mltG(Y488D) mutants depends on induction of expression of the WalRK TCS regulon of PG hydrolases. These results fit a model in which MltG releases anchored PG glycan strands synthesized by PBP1a for crosslinking by a PBP2b:RodA complex in peripheral PG synthesis.


Assuntos
Aminoaciltransferases/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/biossíntese , Deleção de Sequência , Streptococcus pneumoniae/genética , Aminoaciltransferases/metabolismo , Glicosiltransferases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/metabolismo
15.
Nat Chem Biol ; 9(3): 177-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354287

RESUMO

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized CupA is obligatory for copper resistance. The crystal structures of the soluble domain of CupA and the N-terminal metal-binding domain (MBD) of CopA (CopA(MBD)) reveal isostructural cupredoxin-like folds that each harbor a binuclear Cu(I) cluster unprecedented in bacterial copper trafficking. NMR studies reveal unidirectional Cu(I) transfer from the low-affinity site on the soluble domain of CupA to the high-affinity site of CopA(MBD). However, copper binding by CopA(MBD) is not essential for cellular copper resistance, consistent with a primary role of CupA in cytoplasmic Cu(I) sequestration and/or direct delivery to the transmembrane site of CopA for cellular efflux.


Assuntos
Proteínas de Bactérias/química , Cobre/farmacologia , Farmacorresistência Bacteriana , Streptococcus pneumoniae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação/genética , Estrutura Terciária de Proteína , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade
16.
mBio ; 2(5)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21990615

RESUMO

UNLABELLED: The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. IMPORTANCE: Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Serina Endopeptidases/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/enzimologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Chaperonas Moleculares/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases/genética , Streptococcus pneumoniae/genética
17.
J Bacteriol ; 192(1): 264-79, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854910

RESUMO

We report a search for small RNAs (sRNAs) in the low-GC, gram-positive human pathogen Streptococcus pneumoniae. Based on bioinformatic analyses by Livny et al. (J. Livny, A. Brencic, S. Lory, and M. K. Waldor, Nucleic Acids Res. 34:3484-3493, 2006), we tested 40 candidates by Northern blotting and confirmed the expression of nine new and one previously reported (CcnA) sRNAs in strain D39. CcnA is one of five redundant sRNAs reported by Halfmann et al. (A. Halfmann, M. Kovacs, R. Hakenbeck, and R. Bruckner, Mol. Microbiol. 66:110-126, 2007) that are positively controlled by the CiaR response regulator. We characterized 3 of these 14 sRNAs: Spd-sr17 (144 nucleotides [nt]; decreased in stationary phase), Spd-sr37 (80 nt; strongly expressed in all growth phases), and CcnA (93 nt; induced by competence stimulatory peptide). Spd-sr17 and CcnA likely fold into structures containing single-stranded regions between hairpin structures, whereas Spd-sr37 forms a base-paired structure. Primer extension mapping and ectopic expression in deletion/insertion mutants confirmed the independent expression of the three sRNAs. Microarray analyses indicated that insertion/deletion mutants in spd-sr37 and ccnA exerted strong cis-acting effects on the transcription of adjacent genes, indicating that these sRNA regions are also cotranscribed in operons. Deletion or overexpression of the three sRNAs did not cause changes in growth, certain stress responses, global transcription, or virulence. Constitutive ectopic expression of CcnA reversed some phenotypes of D39 Delta ciaR mutants, but attempts to link CcnA to -E to comC as a target were inconclusive in ciaR(+) strains. These results show that S. pneumoniae, which lacks known RNA chaperones, expresses numerous sRNAs, but three of these sRNAs do not strongly affect common phenotypes or transcription patterns.


Assuntos
RNA Bacteriano/genética , RNA não Traduzido/genética , Streptococcus pneumoniae/genética , Northern Blotting , Biologia Computacional , Regulação Bacteriana da Expressão Gênica/genética , Modelos Genéticos , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/química , RNA não Traduzido/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Mol Microbiol ; 67(4): 729-46, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18179423

RESUMO

spxB-encoded pyruvate oxidase is a major virulence factor of Streptococcus pneumoniae. During aerobic growth, SpxB synthesizes H2O2 and acetyl phosphate, which play roles in metabolism, signalling, and oxidative stress. We report here the first cis- and trans-acting regulatory elements for spxB transcription. These elements were identified in a genetic screen for spontaneous mutations that caused colonies of strain D39 to change from a semitransparent to an opaque appearance. Six of the seven opaque colonies recovered (frequency approximately 3 x 10(-5)) were impaired for SpxB function or expression. Two mutations changed amino acids in SpxB likely required for cofactor or subunit binding. One mutation defined a cis-acting adjacent direct repeat required for optimal spxB transcription. The other three spontaneous mutations created the same frameshift near the start of the trans-acting spxR regulatory gene. The SpxR protein contains helix-turn-helix, CBS and HotDog domains implicated in binding DNA, adenosyl compounds, and CoA-containing compounds respectively, and suggest that SpxR positively regulates spxB transcription in response to energy and metabolic state. Microarray analyses unexpectedly demonstrated that SpxR also positively regulates the strH exoglycosidase gene, which, like spxB, has been implicated in colonization. Finally, SpxR is required for full virulence in a murine model of infection.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções Pneumocócicas/microbiologia , Piruvato Oxidase/genética , Streptococcus pneumoniae/genética , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Piruvato Oxidase/química , Piruvato Oxidase/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo
19.
J Bacteriol ; 187(21): 7444-59, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16237028

RESUMO

The VicRK (YycFG) two-component regulatory system (TCS) is required for virulence of the human respiratory pathogen Streptococcus pneumoniae (pneumococcus). The VicR (YycF) response regulator (RR) is essential through its positive regulation of pcsB, which encodes an extracellular protein that mediates murein biosynthesis. To determine other genes that are regulated by VicR, we performed microarray analyses on a unique DeltavicR deletion mutant, which was constructed by uncoupling regulation of pcsB. Results from these microarray experiments support the idea that the VicR RR exerts strong positive regulation on the transcription of a set of genes encoding important surface proteins, including the PspA virulence factor, two proteins (Spr0096 and Spr1875) containing LysM peptidoglycan-binding domains, and a putative membrane protein (Spr0709) of unknown function. To demonstrate direct regulation, we performed band shift and footprinting experiments using purified unphosphorylated VicR and phosphorylated VicR-P, which was prepared by reaction with acetyl phosphate. VicR and VicR-P bound to regions upstream of pcsB, pspA, spr0096, spr1875, and spr0709. Phosphorylation of VicR to VicR-P increased the apparent strength and changed the nature of binding to these regions. DNase I footprinting of VicR and VicR-P bound to regions upstream of pcsB, pspA, spr0096, and spr1875 showed protection of extended regions containing a degenerate sequence related to a previously proposed consensus. These combined approaches did not support autoregulation of the vicRKX operon or substantive direct regulation of fatty acid biosynthesis by VicR or VicR-P. However, the DeltavicR mutant required fatty acids in some conditions, which supports the notion that the VicRK TCS may mediate membrane integrity as well as murein biosynthesis and virulence factor expression in S. pneumoniae.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/biossíntese , Streptococcus pneumoniae/genética , Região 5'-Flanqueadora , Adaptação Fisiológica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Pegada de DNA , Proteínas de Ligação a DNA/análise , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Perfilação da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , RNA Bacteriano/análise , RNA Mensageiro/análise , Transdução de Sinais , Streptococcus pneumoniae/fisiologia , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
20.
J Comp Neurol ; 461(3): 317-32, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12746871

RESUMO

This study investigated the distribution of metabotropic glutamate receptors (mGluRs) in meningeal and parenchymal microvasculature and in choroid plexus by means of Western blot analysis and immunohistochemistry. Western blot analysis demonstrated mGluR expression in both rat and human leptomeningeal tissues. In the rat, mGluR expression was developmentally regulated, with only mGluR2/3 showing expression at the embryonic day 19 developmental stage. In contrast, mGluR1 alpha, mGluR2/3, mGluR4a, and mGluR7 were expressed in leptomeninges from adult rats. Immunohistochemical analyses showed intense mGluR1 alpha immunoreactivity in the pia mater and blood vessels in the subarachnoid space and in the arachnoid layer of the meninges. mGluR2/3, mGluR4a, mGluR5, and mGluR7 were also expressed in meningeal microvasculature. In addition, the parenchymal microvasculature and choroid plexus were strongly immunoreactive for mGluR1 alpha, mGluR2/3, mGluR4a, mGluR5, and mGluR7. We used antibodies specific for phenotypic markers of microvascular and glial cells to characterize the cell type(s) immunopositive for mGluRs. Comparison of staining with anti-von Willebrand factor antibody and anti-mGluR antibodies revealed that mGluR immunoreactivity was present in cells that surrounded the luminal surface labeled by the endothelial cell marker. In these cells, smooth muscle actin and mGluR immunoreactivity overlapped, suggesting that, in addition to endothelial cells, pericytes within the microvasculature also express mGluRs. Furthermore, expression of mGluR1 alpha was also observed in pure pericyte cultures isolated from bovine retina. These data suggest that glutamate by means of activation of mGluRs may have a broad sphere of physiological influence in the brain which in addition to modulating synaptic transmission may also have a role in determining microvascular function and dysfunction.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Plexo Corióideo/irrigação sanguínea , Meninges/irrigação sanguínea , Ratos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Western Blotting , Bovinos , Células Cultivadas , Humanos , Imuno-Histoquímica , Masculino , Microcirculação , Pericitos/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...