Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060790

RESUMO

Precipitation patterns are commonly concentric rings forming in a Petri dish or parallel bands appearing in a test tube (Liesegang phenomenon). The rings frequently consist of a number of convex segments that are separated from each other by spaces devoid of precipitate resulting in small gaps (dislocations). Along these gaps, the so-called zig-zag structures can form, which connect one side of a gap with its opposite side. We observe that the occurrence of zig-zags requires a minimum thickness of the reactive layer (≥ 0.8 mm). This fact together with microscopic evidence indicates their three-dimensional character. One finds that at the very beginning of the precipitation reaction a curling process starts in the corresponding contour lines. These observations suggest structures of a helicoid with the axis perpendicular to the plane of the reaction-diffusion front to pass through the layer. Zig-zags are not parallel to the reaction plane, i.e., they are not formed periodically, but evolve continuously as a rotating spiral wave. Thus, their topology is closely related to helices in a test tube.

2.
J Phys Chem Lett ; 3(8): 977-80, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286558

RESUMO

A high-speed camera was used to investigate the early stage of a chemical reaction within a few milliseconds. We focus on the process of color change caused by a droplet containing a pH indicator when impinging on the surface of alkaline solution. Contrary to our expectation, this reaction starts along the equatorial line, and not at the protruding edge of the droplet, where it first touches the reaction partner. Small vertical fingers emerge from the front line within 1.5 ms. The results suggest that the observed deformation of the droplet and heat diffusion play major roles during this early reaction stage. Our investigations contribute to the understanding of short-term transport processes across interfaces, including the onset of unstable behavior of reaction fronts.

3.
Phys Rev Lett ; 98(25): 254501, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678027

RESUMO

We report on cavitation in confined microscopic environments which are commonly called microfluidic or lab-on-a-chip systems. The cavitation bubble is created by focusing a pulsed laser into these structures filled with a light-absorbing liquid. At the center of a 20 microm thick and 1 mm wide channel, pancake-shaped bubbles expand and collapse radially. The bubble dynamics compares with a two-dimensional Rayleigh model and a planar flow field during the bubble collapse is measured. When the bubble is created close to a wall a liquid jet is focused towards the wall, resembling the jetting phenomenon in axisymmetry. The jet flow creates two counter-rotating vortices which stir the liquid at high velocities. For more complex geometries, e.g., triangle- and square-shaped structures, the number of liquid jets recorded correlates with the number of boundaries close to the bubble.

4.
Biophys J ; 88(1): 639-46, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15489309

RESUMO

External control of oscillatory glycolysis in yeast extract has been performed by application of either homogeneous temperature oscillations or stationary, spatial temperature gradients. Entrainment of the glycolytic oscillations by the 1/2- and 1/3-harmonic, as well as the fundamental input frequency, could be observed. From the phase response curve to a single temperature pulse, a distinct sensitivity of NADH-oxidizing processes, compared with NAD-reducing processes, is visible. Determination of glycolytic intermediates shows that the feedback-regulated phosphofructokinase as well as the glyceraldehyde-3-phosphate dehydrogenase are the most temperature-sensitive steps of glycolysis. We also find strong concentration changes in ATP and AMP at varying temperatures and, accordingly, in the energy charge. Construction of a feedback loop for spatial control of temperature by means of a Peltier element allowed us to apply a temperature gradient to the yeast extract. With this setup it is possible to initiate traveling waves and to control the wave velocity.


Assuntos
Oscilometria/métodos , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Sistema Livre de Células , Computadores , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Glucose/metabolismo , Glicólise , Cinética , NAD/química , NAD/metabolismo , Saccharomyces , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...