Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975693

RESUMO

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out (DKO) mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.

2.
Neurosci Res ; 154: 56-59, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31103423

RESUMO

Unilateral injection of 6-hydroxydopamine (6-OHDA) is commonly used to generate a rodent model of Parkinson's disease (PD). Although motor deficits of the lower extremities represent one of the major clinical symptoms in PD patients, validated tests for assessing motor impairments of the hind limb in 6-OHDA mice are currently unavailable. We here report the video-based assessments of the asymmetric use of hind limbs in 6-OHDA mice. A significantly decreased number of spontaneous hind limb stepping was observed in the contralateral-to-lesioned side, and was dose dependently reversed by levodopa, suggesting that it could be utilized for screening PD therapeutics.


Assuntos
Modelos Animais de Doenças , Marcha/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Animais , Corpo Estriado/metabolismo , Membro Posterior , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidopamina , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Front Neurol ; 10: 1258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866925

RESUMO

Although the administration of dopamine precursor levodopa remains as the mainstay for the treatment of Parkinson's disease, long-term exposure to levodopa often causes a disabling complication, referred to as levodopa-induced dyskinesias. Therefore, the development of new therapeutic interventions to dampen levodopa-induced dyskinesias and parkinsonian motor deficits is needed in the treatment of Parkinson's disease. Intracerebral brain infusion has the merit of being able to specifically deliver any drug into any brain part. By using an intracerebral infusion system equipped with implantable, programmable, and refillable pumps, we show herein that continuous intrastriatal administration of memantine (MMT), which is a non-competitive N-methyl-D-aspartate receptor antagonist, attenuates levodopa-induced dyskinesias and parkinsonian signs in 6-hydroxydopamine-lesioned hemiparkinsonian mice that received daily levodopa treatment. Corroborating the general thought that overactivation of the striatal N-methyl-D-aspartate receptor function might generate levodopa-induced dyskinesias and parkinsonism, our results suggest that a continuous intrastriatal MMT infusion can be beneficial for the management of Parkinson's disease with levodopa-induced dyskinesias. Our study also provides indications for the prototypic use of pharmacological deep-brain modulation through intracerebral infusion systems for treating medically intractable movement disorders.

4.
Front Pharmacol ; 9: 1311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505273

RESUMO

Parkinson's disease (PD) is caused by a progressive degeneration of nigral dopaminergic cells leading to striatal dopamine deficiency. From the perspective of antiparkinsonian drug mechanisms, pharmacologic treatment of PD can be divided into symptomatic and disease-modifying (neuroprotective) therapies. An increase in the level and activity of the Abelson non-receptor tyrosine kinase (c-Abl) has been identified in both human and mouse brains under PD conditions. In the last decade, it has been observed that the inhibition of c-Abl activity holds promise for protection against the degeneration of nigral dopaminergic cells in PD and thereby exerts antiparkinsonian effects. Accordingly, c-Abl inhibitors have been applied clinically as a disease-modifying therapeutic strategy for PD treatment. Moreover, in a series of studies, including that presented here, experimental evidence suggests that in a mouse model of parkinsonism induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, c-Abl inhibition exerts an immediate effect improving motor impairments by normalizing altered activity in striatal postsynaptic signaling pathways mediated by Cdk5 (cyclin-dependent kinase 5) and DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein 32 kDa). Based on this, we suggest that c-Abl inhibitors represent an ideal antiparkinsonian agent that has both disease-modifying and symptomatic effects. Future research is required to carefully evaluate the therapeutic efficacy and clinical challenges associated with applying c-Abl inhibitors to the treatment of PD.

5.
J Am Chem Soc ; 140(46): 15690-15700, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347981

RESUMO

Hybrid improper ferroelectricity, which utilizes nonpolar but ubiquitous rotational/tilting distortions to create polarization, offers an attractive route to the discovery of new ferroelectric and multiferroic materials because its activity derives from geometric rather than electronic origins. Design approaches blending group theory and first principles can be utilized to explore the crystal symmetries of ferroelectric ground states, but in general, they do not make accurate predictions for some important parameters of ferroelectrics, such as Curie temperature ( TC). Here, we establish a predictive and quantitative relationship between TC and the Goldschmidt tolerance factor, t, by employing n = 2 Ruddlesden-Popper (RP) A3B2O7 as a prototypical example of hybrid improper ferroelectrics. The focus is placed on an RP system, (Sr1- xCa x)3Sn2O7 ( x = 0, 0.1, and 0.2), which allows for the investigation of the purely geometric (ionic size) effect on ferroelectric transitions, due to the absence of the second-order Jahn-Teller active (d0 and 6s2) cations that often lead to ferroelectric distortions through electronic mechanisms. We observe a ferroelectric-to-paraelectric transition with TC = 410 K for Sr3Sn2O7. We also find that the TC increases linearly up to 800 K upon increasing the Ca2+ content, i.e., upon decreasing the value of t. Remarkably, this linear relationship is applicable to the suite of all known A3B2O7 hybrid improper ferroelectrics, indicating that the  TC correlates with the simple crystal chemistry descriptor, t, based on the ionic size mismatch. This study provides a predictive guideline for estimating the TC of a given material, which would complement the convergent group-theoretical and first-principles design approach.

6.
Oncotarget ; 9(101): 37520-37533, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30680067

RESUMO

The acquisition of resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) is one of the major problems in the pharmacotherapy against non-small cell lung cancers; however, molecular mechanisms remain to be fully elucidated. Here, using a newly-established erlotinib-resistant cell line, PC9/ER, from PC9 lung cancer cells, we demonstrated that the expression of translation-related molecules, including eukaryotic translation initiation factor 3 subunit C (eIF3c), was upregulated in PC9/ER cells by proteome analyses. Immunoblot analyses confirmed that eIF3c protein increased in PC9/ER cells, compared with PC9 cells. Importantly, the knockdown of eIF3c with its siRNAs enhanced the drug sensitivity in PC9/ER cells. Mechanistically, we found that LC3B-II was upregulated in PC9/ER cells, while downregulated by the knockdown of eIF3c. Consistently, the overexpression of eIF3c increased the number of autophagosomes, proposing the causality between eIF3c expression and autophagy. Moreover, chloroquine, an autophagy inhibitor, restored the sensitivity to erlotinib. Finally, immunohistochemical analyses of biopsy samples showed that the frequency of eIF3c-positive cases was higher in the patients with EGFR-TKI resistance than those prior to EGFR-TKI treatment. Moreover, the eIF3c-positive cases exhibited poor prognosis in EGFR-TKI treatment. Collectively, the upregulation of eIF3c could impair the sensitivity to EGFR-TKI as a novel mechanism of the drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...