Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 42(1-9): 125-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047273

RESUMO

Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

2.
Ultrasonics ; 42(1-9): 131-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047274

RESUMO

The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.

3.
Ultrasonics ; 40(1-8): 361-4, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12159965

RESUMO

Vibration and welding characteristics of complex vibration ultrasonic welding systems of 27 and 40 kHz were studied. Complex vibration systems, which have elliptical to circular or rectangular to square locus, are effective for ultrasonic welding of various specimens including the same and different metal specimens, and for direct welding of semiconductor tips and packaging of various electronic devices without solder. The complex vibration systems consist of a one-dimensional longitudinal-torsional vibration converter with slitted part, a stepped horn and a longitudinal vibration transducer as a driving source. The complex vibration welding tips of 27 and 40 kHz have enough area of 6-8 mm square for various welding specimens. Aluminum plate specimens of 0.3-1.0 mm thickness were successfully joined with weld strengths almost equal to aluminum specimen strength, and independent to the specimen direction. Required vibration amplitude of 40 kHz is smaller than that of 27 kHz.

4.
Ultrasonics ; 40(1-8): 375-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12159969

RESUMO

Ultrasonic plastic welding using fundamental and higher resonance frequency vibrations simultaneously was studied. Using higher frequency, welding characteristics is improved due to the larger vibration loss of plastic materials. The 26 kHz welding tip vibrates in maximum velocity of over 4.5 m/s (peak-to-zero value) under a fundamental resonance frequency and there are several higher resonance frequencies up to 95 kHz whose vibration velocities are over one-third that of the fundamental frequency. Welding characteristics of 1.0-mm-thick polypropylene sheets are measured in the cases the vibration system are driven under combined driving voltages of fundamental and higher resonance frequencies. Welded area increases as number of driven higher frequencies increases. The welded area by three frequencies is about three to four times that of the case where only the fundamental frequency is driven. The welding characteristics of ultrasonic plastic welding are improved significantly by driving higher resonance frequencies simultaneously.

5.
Ultrasonics ; 40(1-8): 371-4, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12159968

RESUMO

Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...