Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 36(1): 18, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498970

RESUMO

BACKGROUND: Little is known about the affinity and stability of 99mTc-labeled 2-methoxyisobutylisonitrile (99mTc-MIBI) and tetrofosmin (99mTc-TF) for imaging of multiple drug resistance transporters in cancer. We examined the affinity of 99mTc-labeled compounds for these transporters and their stability. METHODS: 99mTc-MIBI and 99mTc-TF were incubated in vesicles expressing P-glycoprotein (MDR1), multidrug resistance-associated protein (MRP)1-4, or breast cancer resistance protein with and without verapamil (MDR1 inhibitor) or MK-571 (MRP inhibitor). Time activity curves of 99mTc-labeled compounds were established using SK-N-SH neuroblastoma, SK-MEL-28 melanoma, and PC-3 prostate adenocarcinoma cell lines, and transporter expression of multiple drug resistance was measured in these cells. The stability was evaluated. RESULTS: In vesicles, 99mTc-labeled compounds had affinity for MDR1 and MRP1. 99mTc-TF had additional affinity for MRP2 and MRP3. In SK-N-SH cells expressing MDR1 and MRP1, MK-571 produced the highest uptake of both 99mTc-labeled compounds. 99mTc-MIBI uptake with inhibitors was higher than 99mTc-TF uptake with inhibitors. 99mTc-TF was taken up more in SK-MEL-28 cells expressing MRP1 and MRP2 than PC-3 cells expressing MRP1 and MRP3. 99mTc-MIBI was metabolized, whereas 99mTc-TF had high stability. CONCLUSION: 99mTc-MIBI is exported via MDR1 and MRP1 (MRP1 > MDR1) at greater levels and more quickly compared to 99mTc-TF, which is exported via MDR1 and MRP1-3 (MRP1 > MDR1; MRP1, 2 > MRP3). Because 99mTc-MIBI is metabolized, clinical imaging for monitoring MDR and shorter examination times may be possible with an earlier scanning time on late phase imaging. 99mTc-TF has high stability and accurately reflects the function of MDR1 and MRP1-3.


Assuntos
Monitoramento de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Imagem Molecular/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos SCID , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Compostos de Organotecnécio/química , Compostos de Organotecnécio/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Compostos Radiofarmacêuticos/química , Fatores de Tempo , Verapamil/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nucl Med Biol ; 41(4): 338-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607436

RESUMO

INTRODUCTION: In clinical hepatobiliary scintigraphy, (99m)Tc-N-pyridoxyl-5-methyltryptophan ((99m)Tc-PMT) is an effective radiotracer among the (99m)Tc-pyridoxylaminates. However, the mechanisms of human hepatic uptake and bile excretion transport of (99m)Tc-PMT have not been determined. We thus investigated the transport mechanisms of human hepatic uptake and bile excretion in hepatobiliary scintigraphy with (99m)Tc-PMT. METHODS: Four solute carrier (SLC) transporters involved in hepatic uptake were evaluated using human embryonic kidney (HEK) and HeLa cells with high expression of SLC transporters (organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporters (OAT)2 and organic cation transporters (OCT)1) after 5 min of (99m)Tc-PMT incubation. Metabolic analysis of (99m)Tc-PMT was performed using pooled human liver S9. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters for bile excretion were examined using hepatic ABC transporter vesicles human expressing multiple drug resistance 1 (MDR1), multidrug resistance-associated protein 2 (MRP2), breast cancer resistance protein or bile salt export pump. (99m)Tc-PMT was incubated for 1, 3 and 5 min with ATP or adenosine monophosphate and these vesicles. SPECT scans were performed in normal and Eisai hyperbilirubinemic (EHBR) model rats, deficient in Mrp2 transporters, without and with verapamil (rat Mdr1 and human MDR1 inhibitor) after intravenous injection of (99m)Tc-PMT. RESULTS: Uptake of (99m)Tc-PMT in HEK293/OATP1B1 and HeLa/OATP1B3 was significantly higher than that in HEK293- and HeLa-mock cells. (99m)Tc-PMT was not metabolized in the human liver S9. In vesicles with high expression of ABC transporters, uptake of MDR1 or MRP2 was significantly higher at all incubation times. Bile excretion of (99m)Tc-PMT was also identified by comparison between normal and EHBR rats with and without verapamil on in-vivo imaging. CONCLUSIONS: Human hepatic uptake of (99m)Tc-PMT was transferred by OATP1B1 and OATP1B3, and excretion into bile canaliculi via MDR1 and MRP2. (99m)Tc-PMT hepatobiliary scintigraphy may be a useful ligand as a noninvasive method of visualizing and quantifying hepatobiliary transporter functionality, which could predict drug pharmacokinetics.


Assuntos
Bile/diagnóstico por imagem , Bile/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Compostos de Organotecnécio , Piridoxal/análogos & derivados , Triptofano/análogos & derivados , Animais , Transporte Biológico , Células HEK293 , Células HeLa , Humanos , Masculino , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Cintilografia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...