Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656967

RESUMO

Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving a membrane protein YeeE (TsuA) in Escherichia coli was characterized. YeeE-like proteins are conserved in some bacteria, archaea, and eukaryotes. However, the precise function of YeeE, along with its potential partner protein in the thiosulfate ion uptake pathway, remained unclear. Here, we assessed selective thiosulfate transport via Spirochaeta thermophila YeeE in vitro and characterized E. coli YeeD (TsuB) as an adjacent and essential protein for YeeE-mediated thiosulfate uptake in vivo. We further showed that S. thermophila YeeD possesses thiosulfate decomposition activity and that a conserved cysteine in YeeD was modified to several forms in the presence of thiosulfate. Finally, the crystal structures of S. thermophila YeeE-YeeD fusion proteins at 3.34-Å and 2.60-Å resolutions revealed their interactions. The association was evaluated by a binding assay using purified S. thermophila YeeE and YeeD. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.


Assuntos
Escherichia coli , Sulfurtransferases , Tiossulfatos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Cristalografia por Raios X , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiossulfatos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
J Biol Chem ; 299(12): 105393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890784

RESUMO

Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.


Assuntos
Rodopsina , Membrana Celular/metabolismo , Transporte de Íons , Íons/metabolismo , Subunidades Proteicas/metabolismo , Rodopsina/química , Rodopsina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais
3.
J Biol Chem ; 298(11): 102572, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209828

RESUMO

PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD-YfgM complex formation as well as the molecular mechanisms of PpiD-YfgM and PpiD/YfgM-Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD-YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Canais de Translocação SEC/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte Proteico , Periplasma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptidilprolil Isomerase/química
4.
Sci Adv ; 8(36): eabq3817, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070375

RESUMO

Microtubules play important roles in biological functions by forming superstructures, such as doublets and branched structures, in vivo. Despite the importance, it is challenging to construct these superstructures in vitro. Here, we designed a tetrameric fluorescent protein Azami-Green (AG) fused with His-tag and Tau-derived peptide (TP), TP-AG, to generate the superstructures. Main binding sites of TP-AG can be controlled to the inside and outside of microtubules by changing the polymerization conditions. The binding of TP-AG to the inside promoted microtubule formation and generated rigid and stable microtubules. The binding of TP-AG to the outside induced various microtubule superstructures, including doublets, multiplets, branched structures, and extremely long microtubules by recruiting tubulins to microtubules. Motile microtubule aster structures were also constructed by TP-AG. The generation of various microtubule superstructures by a single type of exogenous protein is a new concept for understanding the functions of microtubules and constructing microtubule-based nanomaterials.

5.
Structure ; 30(8): 1088-1097.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660157

RESUMO

The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Lipídeos , Peptidoglicano/química , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
6.
FEBS Lett ; 595(14): 1902-1913, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050946

RESUMO

A transporter of the multidrug and toxic compound extrusion (MATE) family, Nicotiana tabacum MATE2 (NtMATE2), is located in the vacuole membrane of the tobacco plant root and is involved in the transportation of nicotine, a secondary or specialized metabolic compound in Solanaceae. Here, we report the crystal structures of NtMATE2 in its outward-facing forms. The overall structure has a bilobate V-shape with pseudo-symmetrical assembly of the N- and C-lobes. In one crystal structure, the C-lobe cavity of NtMATE2 interacts with an unidentified molecule that may partially mimic a substrate. In addition, NtMATE2-specific conformational transitions imply that an unprecedented movement of the transmembrane α-helix 7 is related to the release of the substrate into the vacuolar lumen.


Assuntos
Nicotiana/metabolismo , Nicotina/química , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Plantas/química , Vacúolos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Modelos Moleculares , Nicotina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nicotiana/genética , Vacúolos/química
7.
Proc Natl Acad Sci U S A ; 117(45): 27989-27996, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093205

RESUMO

Escherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a ß-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metaloproteases/metabolismo , Membrana Externa Bacteriana/metabolismo , Escherichia coli/enzimologia , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteólise
8.
Sci Adv ; 6(35): eaba7637, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923628

RESUMO

We have demonstrated that a bacterial membrane protein, YeeE, mediates thiosulfate uptake. Thiosulfate is used for cysteine synthesis in bacteria as an inorganic sulfur source in the global biological sulfur cycle. The crystal structure of YeeE at 2.5-Å resolution reveals an unprecedented hourglass-like architecture with thiosulfate in the positively charged outer concave side. YeeE is composed of loops and 13 helices including 9 transmembrane α helices, most of which show an intramolecular pseudo 222 symmetry. Four characteristic loops are buried toward the center of YeeE and form its central region surrounded by the nine helices. Additional electron density maps and successive molecular dynamics simulations imply that thiosulfate can remain temporally at several positions in the proposed pathway. We propose a plausible mechanism of thiosulfate uptake via three important conserved cysteine residues of the loops along the pathway.

11.
J Biol Chem ; 294(49): 18898-18908, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662434

RESUMO

Bacterial membrane proteins are integrated into membranes through the concerted activities of a series of integration factors, including membrane protein integrase (MPIase). However, how MPIase activity is complemented by other integration factors during membrane protein integration is incompletely understood. Here, using inverted inner-membrane vesicle and reconstituted (proteo)liposome preparations from Escherichia coli cells, along with membrane protein integration assays and the PURE system to produce membrane proteins, we found that anti-MPIase IgG inhibits the integration of both the Sec-independent substrate 3L-Pf3 coat and the Sec-dependent substrate MtlA into E. coli membrane vesicles. MPIase-depleted membrane vesicles lacked both 3L-Pf3 coat and MtlA integration, indicating that MPIase is involved in the integration of both proteins. We developed a reconstitution system in which disordered spontaneous integration was precluded, which revealed that SecYEG, YidC, or both, are not sufficient for Sec-dependent and -independent integration. Although YidC had no effect on MPIase-dependent integration of Sec-independent substrates in the conventional assay system, YidC significantly accelerated the integration when the substrate amounts were increased in our PURE system-based assay. Similar acceleration by YidC was observed for MtlA integration. YidC mutants with amino acid substitutions in the hydrophilic cavity inside the membrane were defective in the acceleration of the Sec-independent integration. Of note, MPIase was up-regulated upon YidC depletion. These results indicate that YidC accelerates the MPIase-dependent integration of membrane proteins, suggesting that MPIase and YidC function sequentially and cooperatively during the catalytic cycle of membrane protein integration.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lipossomos/metabolismo
12.
EMBO Rep ; 20(10): e49034, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31518050

RESUMO

The cytoplasm is the main place for protein translation from where nascent proteins are transported to their working areas, including the inside, outside, and membrane of the cell. The majority of newly synthesized membrane proteins is co-translationally inserted into the membrane by the evolutionary conserved Sec translocon. In this issue of EMBO Reports, Kater et al [1] use single-particle cryo-electron microscopy to visualize a high-resolution structure of the E. coli SecYEG translocon:ribosome-nascent chain complex in a lipid environment constituted by nanodiscs. This snapshot represents an early intermediate state in membrane protein insertion and provides important information for understanding the molecular mechanism of membrane protein biogenesis.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana , Microscopia Crioeletrônica , Escherichia coli , Transporte Proteico , Canais de Translocação SEC
13.
Protein J ; 38(3): 249-261, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972527

RESUMO

Protein translocation and membrane integration are fundamental, conserved processes. After or during ribosomal protein synthesis, precursor proteins containing an N-terminal signal sequence are directed to a conserved membrane protein complex called the Sec translocon (also known as the Sec translocase) in the endoplasmic reticulum membrane in eukaryotic cells, or the cytoplasmic membrane in bacteria. The Sec translocon comprises the Sec61 complex in eukaryotic cells, or the SecY complex in bacteria, and mediates translocation of substrate proteins across/into the membrane. Several membrane proteins are associated with the Sec translocon. In Escherichia coli, the membrane protein YidC functions not only as a chaperone for membrane protein biogenesis along with the Sec translocon, but also as an independent membrane protein insertase. To understand the molecular mechanism underlying these dynamic processes at the membrane, high-resolution structural models of these proteins are needed. This review focuses on X-ray crystallographic analyses of the Sec translocon and YidC and discusses the structural basis for protein translocation and integration.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Canais de Translocação SEC/química , Membrana Celular/ultraestrutura , Cristalografia por Raios X/métodos , Modelos Moleculares , Chaperonas Moleculares/química
14.
Cell Rep ; 27(4): 1221-1230.e3, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018135

RESUMO

Sarco/endoplasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b) is a ubiquitously expressed membrane protein that facilitates Ca2+ uptake from the cytosol to the ER. SERCA2b includes a characteristic 11th transmembrane helix (TM11) followed by a luminal tail, but the structural basis of SERCA regulation by these C-terminal segments remains unclear. Here, we determined the crystal structures of SERCA2b and its C-terminal splicing variant SERCA2a, both in the E1-2Ca2+-adenylyl methylenediphosphonate (AMPPCP) state. Despite discrepancies with the previously reported structural model of SERCA2b, TM11 was found to be located adjacent to TM10 and to interact weakly with a part of the L8/9 loop and the N-terminal end of TM10, thereby inhibiting the SERCA2b catalytic cycle. Accordingly, mutational disruption of the interactions between TM11 and its neighboring residues caused SERCA2b to display SERCA2a-like ATPase activity. We propose that TM11 serves as a key modulator of SERCA2b activity by fine-tuning the intramolecular interactions with other transmembrane regions.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Homeostase , Humanos , Transporte de Íons , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
15.
Structure ; 27(1): 152-160.e3, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30318467

RESUMO

Membrane proteins play important roles in various cellular functions. To analyze membrane proteins, nanodisc technology using membrane scaffold proteins allows single membrane protein units to be embedded into the lipid bilayer disc without detergents. Recent advancements in high-speed atomic force microscopy (HS-AFM) have enabled us to monitor the real-time dynamics of proteins in solution at the nanometer scale. In this study, we report HS-AFM imaging of membrane proteins reconstituted into nanodiscs using two membrane protein complexes, SecYEG complex and MgtE dimer. The observed images showed single particles of membrane protein-embedded nanodiscs in an end-up orientation whereby the membrane was fixed parallel to the supporting solid surface and in a side-on orientation whereby the membrane plane was vertically fixed to the solid surface, enabling the elucidation of domain fluctuations in membrane proteins. This technique provides a basic method for the high-resolution imaging of single membrane proteins by HS-AFM.


Assuntos
Antiporters/química , Proteínas de Bactérias/química , Nanopartículas/química , Canais de Translocação SEC/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos
16.
J Mol Biol ; 431(3): 625-635, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521812

RESUMO

The ß-barrel assembly machinery (BAM) complex mediates the assembly of ß-barrel membrane proteins in the outer membrane. BepA, formerly known as YfgC, interacts with the BAM complex and functions as a protease/chaperone for the enhancement of the assembly and/or degradation of ß-barrel membrane proteins. To elucidate the molecular mechanism underlying the dual functions of BepA, its full-length three-dimensional structure is needed. Here, we report the crystal structure of full-length BepA at 2.6-Å resolution. BepA possesses an N-terminal protease domain and a C-terminal tetratricopeptide repeat domain, which interact with each other. Domain cross-linking by structure-guided introduction of disulfide bonds did not affect the activities of BepA in vivo, suggesting that the function of this protein does not involve domain rearrangement. The full-length BepA structure is compatible with the previously proposed docking model of BAM complex and tetratricopeptide repeat domain of BepA.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Metaloproteases/química , Cristalografia por Raios X/métodos , Escherichia coli/química , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína
17.
Biochem Biophys Res Commun ; 505(1): 141-145, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241934

RESUMO

YidC/Alb3/Oxa1 family proteins are involved in the insertion and assembly of membrane proteins. The core five transmembrane regions of YidC, which are conserved in the protein family, form a positively charged cavity open to the cytoplasmic side. The cavity plays an important role in membrane protein insertion. In all reported structural studies of YidC, the second cytoplasmic loop (C2 loop) was disordered, limiting the understanding of its role. Here, we determined the crystal structure of YidC including the C2 loop at 2.8 Šresolution with R/Rfree = 21.8/27.5. This structure and subsequent molecular dynamics simulation indicated that the intrinsic flexible C2 loop covered the positively charged cavity. This crystal structure provides the coordinates of the complete core region including the C2 loop, which is valuable for further analyses of YidC.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Domínios Proteicos , Estrutura Secundária de Proteína , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica
18.
FEMS Microbiol Lett ; 365(12)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718185

RESUMO

The bacterial membrane protein SecDF enhances protein translocation across the membrane driven by the complex of SecA ATPase and SecYEG. Many newly synthesized proteins in the cytoplasm are programmed to be translocated to the periplasm via the narrow channel that is formed in the center of SecYEG. During the protein-translocation process, SecDF is proposed to undergo repeated conformational transitions to pull out the precursor protein from the SecYEG channel into the periplasm. Once SecDF captures the precursor protein on the periplasmic surface, SecDF can complete protein translocation even if SecA function is inactivated by ATP depletion, implying that SecDF is a protein-translocation motor that works independent of SecA. Structural and functional analyses of SecDF in 2011 suggested that SecDF utilizes the proton gradient and interacts with precursor protein in the flexible periplasmic region. The crystal structures of SecDF in different states at more than 3Å resolution were reported in 2017 and 2018, which further improved our understanding of the dynamic molecular mechanisms of SecDF. This review summarizes recent structural studies of SecDF.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prótons
19.
Structure ; 26(3): 485-489.e2, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29398525

RESUMO

The membrane protein SecDF, belonging to the RND superfamily, enhances protein translocation at the extracytoplasmic side using a proton gradient. Here, we report the crystal structure of SecDF in a form we named Super-membrane-facing (Super F) form, demonstrating a ß-barrel architecture instead of the previously reported ß-sheet structure. Through this structural insight and supporting results of an in vivo crosslinking experiment, we propose a remote coupling model in which a structural change of the transmembrane region drives a functional, extracytoplasmic conformational transition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Thermus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em Folha beta , Transporte Proteico
20.
Structure ; 25(9): 1455-1460.e2, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877507

RESUMO

The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane.


Assuntos
Brassicaceae/metabolismo , Proteínas de Plantas/química , Sítios de Ligação , Brassicaceae/química , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos , Evolução Molecular , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...