Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21971-21981, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006768

RESUMO

This study promotes the use of nanobiochar (NBC) as an environmentally friendly substitute to conventional fillers to improve various properties of biopolymers such as their mechanical strength, thermal stability and crystallization properties. TGA analysis showed a slight increase in onset thermal degradation temperature of the composites by up to 5 °C with the addition of 4 wt% NBC. Non-isothermal DSC analysis determined that the addition of NBC into PHBHHx increases the crystallization temperature and degree of crystallinity of PHBHHx while isothermal DSC analysis demonstrated higher crystallization rate in PHBHHx/NBC composited by up to 54%. PHBHHx incorporated with NBC also exhibited superior tensile strength and modulus versus neat PHBHHx. Increase in mechanical strength was further proven via DMA where PHBHHx/NBC composites maintained higher storage modulus at higher temperatures when compared to neat PHBHHx. PHBHHx/NBC also exhibited no cytotoxicity effect against HaCat cells. This study demonstrates the ability of biochar to act as both nucleating agents and reinforcing agents in biodegradable polymers such as PHBHHx, which could be suitable for packaging application.

2.
ACS Omega ; 5(42): 27072-27082, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134667

RESUMO

Tuning interactions at the interfaces in carbon fiber (CF)-reinforced polymer composites necessitates the implementation of CF surface modification strategies that often require destructive environmentally unfriendly chemistries. In this study, interfacial interactions in cellulose-based composites are tailored by means of a mussel-inspired adhesive polydopamine (PDA) coating, being inherently benign for the environment and for the structure of CFs. The step-by-step growth of PDA was followed by increasing treatment time leading to a hydrophilic PDA-coated surface, presumably via surface-based polymerization mechanisms attributed to strong π-π stacking interactions. Although PDA deposition led to an initial increase in the interfacial shear strength (IFSS) (5 h), it decreased at a longer reaction time (24 h), the formation of weakly attached PDA particles on the coated surface can possibly lie behind the latter phenomenon. Nevertheless, the mechanical properties of the prepared short CF-reinforced composite were improved (tensile strength increased ∼12% compared to the unmodified surface) with decreasing IFSS owing to the particular morphological design, resulting in longer fiber segments. Our study underlines the importance of the morphological design at the interface and considers PDA as a promising bioinspired material to tailor interfacial interactions.

3.
Polymers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316664

RESUMO

Two different liquid assisted processing methods: internal melt-blending (IMB) and twin-screw extrusion (TWS) were performed to fabricate polyethylene (PE)/cellulose nanofiber (CNF) nanocomposites. The nanocomposites consisted maleic anhydride-grafted PE (PEgMA) as a compatibilizer, with PE/PEgMA/CNF ratio of 97/3/0.5-5 (wt./wt./wt.), respectively. Morphological analysis exhibited that CNF was well-dispersed in nanocomposites prepared by liquid-assisted TWS. Meanwhile, a randomly oriented and agglomerated CNF was observed in the nanocomposites prepared by liquid-assisted IMB. The nanocomposites obtained from liquid-assisted TWS exhibited the best mechanical properties at 3 wt.% CNF addition with an increment in flexural strength by almost 139%, higher than that of liquid-assisted IMB. Results from this study indicated that liquid feeding of CNF assisted the homogenous dispersion of CNF in PE matrix, and the mechanical properties of the nanocomposites were affected by compounding method due to the CNF dispersion and alignment.

4.
Front Chem ; 7: 757, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781540

RESUMO

Carbon fiber reinforced composites have exceptional potential to play a key role in the materials world of our future. However, their success undoubtedly depends on the extent they can contribute to advance a global sustainability objective. Utilizing polymers in these composites that can be potentially derived from biomasses would be certainly vital for next-generation manufacturing practices. Nevertheless, deep understanding and tailoring fiber-matrix interactions are crucial issues in order to design carbon fiber reinforced sustainable resource-based biocomposites. In this study, cellulose derivatives (cellulose propionate and cellulose acetate butyrate) are utilized as model polymer matrices that can be potentially fabricated from biomasses, and the mechanical properties of the prepared short carbon fiber reinforced composites are engineered by means of a functional biobased lignin coating on the fiber surface. Furthermore, polyamide 6 based composites are also prepared, the monomer of this polymer could be obtained using C6 sugars derived from lignocellulosic biomasses in the future (through 5-hydroxymethylfurfural). Lignin was successfully immobilized on the carbon fiber surface via an industrially scalable benign epoxidation reaction. The surface modification had a beneficial impact on the mechanical properties of cellulose propionate and polyamide 6 composites. Furthermore, our results also revealed that cellulose-based matrices are highly sensitive to the presence of rigid fiber segments that restrict polymer chain movements and facilitate stress development. It follows that the physicochemical properties of the cellulosic matrices (molecular weight, crystallinity), associated with polymer chain mobility, might need to be carefully considered when designing these composites. At the same time, polyamide 6 showed excellent ability to accommodate short carbon fibers without leading to a largely brittle material, in this case, a maximum tensile strength of ~136 MPa was obtained at 20 wt% fiber loading. These results were further contrasted with that of a petroleum-based polypropylene matrix exhibiting inferior mechanical properties. Our study clearly indicates that carbon fiber reinforced polymers derived and designed using biomass-derived resources can be promising green materials for a sustainable future.

5.
Materials (Basel) ; 12(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621362

RESUMO

While intensive efforts are made to prepare carbon fiber reinforced plastics from renewable sources, less emphasis is directed towards elaborating green approaches for carbon fiber surface modification to improve the interfacial adhesion in these composites. In this study, we covalently attach lignin, a renewable feedstock, to a graphitic surface for the first time. The covalent bond is established via aromatic anchoring groups with amine functions taking part in a nucleophilic displacement reaction with a tosylated lignin derivative. The successful grafting procedures were confirmed by cyclic voltammetry, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Both fragmentation and microdroplet tests were conducted to evaluate the interfacial shear strength of lignin coated carbon fiber samples embedded in a green cellulose propionate matrix and in a commercially used epoxy resin. The microdroplet test showed ~27% and ~65% increases in interfacial shear strength for the epoxy and cellulose propionate matrix, respectively. For the epoxy matrix covalent bond, it is expected to form with lignin, while for the cellulosic matrix hydrogen bond formation might take place; furthermore, plastisizing effects are also considered. Our study opens the gates for utilizing lignin coating to improve the shear tolerance of innovative composites.

6.
ChemistryOpen ; 7(9): 720-729, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258744

RESUMO

Given our possible future dependence on carbon fiber reinforced composites, the introduction of a renewable matrix might be advantageous for the vision of a sustainable world. Cellulose is a superior green candidate and provides exceptional freedom in composite design as the free OH groups can be conveniently functionalized to give tailor-made materials. To obtain a high-performing carbon fiber reinforced cellulose propionate composite, we accurately tailored the interfacial adhesion by invoking click chemistry. The synthetic strategy involved grafting of a phenylacetylene structure onto the carbon fiber surface, onto which O-acylated 6-azido-6-deoxycellulose and a number of aromatic azides could be covalently attached. Single-fiber fragmentation tests indicated that the lipophilicity and size of the substituent on the deposited structure played a crucial role in determining molecular entanglement and mechanical interlocking effects, as penetration into the cellulose propionate matrix was of utmost importance. Enhanced interfacial shear strength was obtained for the carbon fiber covalently functionalized with the cellulose derivative. Nevertheless, the greatest increase was observed for the derivative substituted with a compact and highly lipophilic CF3 substituent. In a broader sense, our study provides a synthetic platform to bind cellulose derivatives to graphitic surfaces and paves the ways towards the preparation of innovative cellulose-based carbonaceous materials.

7.
RSC Adv ; 8(40): 22729-22736, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35539726

RESUMO

Interfacial interactions governing the interfacial adhesion between cellulose propionate and carbon fibre surface are placed under scrutiny to pave the way towards the development of green cellulose-based carbon fibre reinforced polymers. A range of molecular entities are deposited on the surface by initially grafting aromatic structures with appropriate functions via diazonium species followed by further derivatization of these entities. Cellulose propionate was also bound covalently to the surface via a tosylated derivative invoking its facile nucleophilic displacement reaction with surface-grafted amino functions. Significant increase in interfacial shear strength was obtained for the cellulose propionate-grafted carbon fibre composite as well as for the 4-(aminomethyl)benzene-functionalized sample, in the latter case possible hydrogen bonding took place with the cellulose propionate matrix. Furthermore, the positive effect of a highly lipophilic and yet compact -CF3 substituent was also noted. In order to let the grafted structure efficiently penetrate into the matrix, steric factors, lipophilicity and potential secondary interactions should be considered. It needs to be pointed out that we provide the first synthetic strategy to covalently bind cellulose derivatives to a largely graphitic surface and as such, it has relevance to carbonaceous materials being applied in cellulose-based innovative materials in the future.

8.
Carbohydr Polym ; 182: 8-14, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29279129

RESUMO

In the present study, we examined the efficacy of choline acetate (ChOAc, a cholinium ionic liquid))-assisted pretreatment of bagasse powder for subsequent mechanical nanofibrillation to produce lignocellulose nanofibers. Bagasse sample with ChOAc pretreatment and subsequent nanofibrillation (ChOAc/NF-bagasse) was prepared and compared to untreated control bagasse sample (control bagasse), bagasse sample with nanofibrillation only (NF-bagasse) and with ChOAc pretreatment only (ChOAc-bagasse). The specific surface area was 0.83m2/g, 3.1m2/g, 6.3m2/g, and 32m2/g for the control bagasse, ChOAc-bagasse, NF-bagasse, and the ChOAc/NF-bagasse, respectively. Esterified bagasse/polypropylene composites were prepared using the bagasse samples. ChOAc/NF-bagasse exhibited the best dispersion in the composites. The tensile toughness of the composites was 0.52J/cm3, 0.73J/cm3, 0.92J/cm3, and 1.29J/cm3 for the composites prepared using control bagasse, ChOAc-bagasse, NF-bagasse, and ChOAc/NF-bagasse, respectively. Therefore, ChOAc pretreatment and subsequent nanofibrillation of bagasse powder resulted in enhanced tensile toughness of esterified bagasse/polypropylene composites.


Assuntos
Celulose/química , Líquidos Iônicos/química , Lignina/síntese química , Nanofibras/química , Polipropilenos/química , Lignina/química , Tamanho da Partícula
9.
Biomacromolecules ; 12(9): 3299-304, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21790202

RESUMO

Photolysis of poly(L-lactic acid) (PLLA) has many unclear points, such as the degradation mechanism, kinetics, products, and racemization mechanism. To clarify these features of PLLA photolysis, we examined the relationship between photolysis and racemization. The hexad stereosequential analysis of photodegraded PLLA was investigated to specify the racemized positions within a chain in comparison with hydrolysis and thermal degradation. Results from (13)C NMR spectra of UV-irradiated PLLA samples indicated that the samples have racemized d-lactate units at chain ends. From the comparison of racemization behavior among photolysis, hydrolysis, and thermal degradation, it was confirmed that the preferential racemization behavior of each of these three degradation processes is characteristic and distinct, being identified as chain-end racemization, poor racemization, or internal-unit racemization, respectively. The characteristic chain-end racemization behavior of photolysis was first confirmed in this study.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/síntese química , Polímeros/síntese química , Hidrólise , Cinética , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Peso Molecular , Fotólise/efeitos da radiação , Poliésteres , Polímeros/análise , Estereoisomerismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...