Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 273: 107386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286077

RESUMO

Following the accident at the Fukushima Dai-ichi Nuclear Power Station, radiocaesium concentrations were specifically elevated in rockfish species compared to other fish species. To clarify the likely reasons, a caesium metabolic rate in the Japanese rockfish Sebastes cheni was derived by an aquarium experiment of live fish collected from the area off Fukushima. Stable caesium and 137Cs concentration in prey organisms, stomach contents and muscle of rockfish were measured and the bioavailable fraction in prey organisms was evaluated. Using derived transfer parameters, 137Cs radioactivity levels in S. cheni and prey organisms were simulated by a model, and verified by the measured radioactivity concentrations of biota in coastal waters south of the Fukushima Dai-ichi Nuclear Power Station. As a result, slow caesium metabolism in S. cheni was confirmed with the biological half-life (Tb1/2) of 190 d. The determining factor for the initial 137Cs radioactivity levels in S. cheni, was the maximum radioactivity levels in surrounding seawater which was constrained by the sedentary nature of rockfish. Controlling factors of depuration rate of 137Cs levels in S. cheni were slow caesium metabolism, enhanced 137Cs radioactivity level of prey organisms, and survival of older contaminated individuals due to a long life-span. During the study period 2017-2021, 137Cs radioactivity concentrations in seawater decreased close to the level measured before 2010, whereas those in prey organisms and rockfish in southern Fukushima waters were still above the levels that existed before 2010. An additional source for enhancing 137Cs radioactivity in rockfish and biota of the food chain was indicated by the greater 137Cs/133Cs atom ratios in rockfish compared to those in the surrounding seawater, however it was considered to be radiologically insignificant in relation to seafood safety limits.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Animais , Poluentes Radioativos da Água/análise , Peixes/metabolismo , Radioisótopos de Césio/análise , Japão
2.
Mar Pollut Bull ; 197: 115663, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897967

RESUMO

Radioactive cesium (137Cs) is distributed in the world's oceans as a result of global fallout from atmospheric nuclear weapons tests, releases from fuel reprocessing plants, and inputs from nuclear power plant accident. In order to detect future radionuclide contamination, it is necessary to establish a baseline global distribution of radionuclides such as 137Cs and to understand the ocean transport processes that lead to that distribution. In order to aid in the interpretation of the observed database, we have conducted a suite of simulations of the distribution of 137Cs using a global ocean general circulation model (OGCM). Simulated 137Cs radioactivity concentrations agree well with observations, and the results were used to estimate the changes in inventories for each ocean basin. 137Cs activity concentration from atmospheric nuclear weapons tests are expected to be detectable in the world ocean until at least 2030.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Oceanos e Mares , Radioisótopos de Césio/análise , Japão , Oceano Pacífico
3.
Sci Total Environ ; 831: 154670, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35314234

RESUMO

Large amounts of radiocesium were released into marine environments following the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Released radiocesium influenced not only marine environment but also marine biota in Fukushima. Since marine biota as fisheries products is important for Japanese market, it is important to assess the distribution of radiocesium in coastal environment off Fukushima for safety concerns of radioactive contamination. Radiocesium concentrations in sediments are important for understanding fishing ground conditions and for proving the safety of fisheries products in Fukushima. In this study, monthly monitoring data collected from May 2011 to March 2020 were analyzed to describe the temporal variability of 137Cs concentrations in coastal sediments off Fukushima (total of 3647 samples from eight lines at depths of 7-125 m off Fukushima, and three sites in Matsukawa-ura Lagoon). The 137Cs concentration in sediment showed a decreasing trend, but our nonlinear model fitting suggested that this rate of decrease had slowed down. Additionally, 137Cs concentrations were up to 4.08 times greater in shallow sampling sites (7, 10, 20 m depth) following heavy rainfall events (before five months vs. after five months), such as typhoons. These observations were consistent with increasing input from particulate 137Cs fluxes from rivers and increasing dissolved 137Cs concentrations in seawater. Finally, our numerical modeling suggested that riverine 137Cs input could maintain 137Cs concentrations in coastal sediment. These results indicate that riverine 137Cs input following heavy rainfall events is the main factor for maintaining 137Cs concentrations in coastal sediments near the Fukushima Daiichi Nuclear Power Plant.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Sedimentos Geológicos , Japão , Poluentes Radioativos da Água/análise
4.
Sci Total Environ ; 816: 151573, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774626

RESUMO

Accidental leakage of radionuclides from the Fukushima Nuclear Power Plant (FNPP1) took place in the aftermath of the catastrophic tsunamis associated with the Great East Japan Earthquake that occurred on March 11, 2011. Significant amount of radionuclides released into the atmosphere were reportedly transported and deposited on land located near FNPP1. The Niida River, Fukushima, Japan, has been recognized as a terrestrial source of highly contaminated suspended radiocesium adhering to sediment particles in the ocean through the river mouth as a result of hydrological processes. Remaining scientific questions include the oceanic dispersal and inventories of the sediments and suspended radiocesium in the ocean floor derived from the Niida River. Complementing limited in situ data, we developed a quadruple nested 3D ocean circulation and sediment transport model in an extremely high-resolution configuration to quantify the transport processes of the suspended radiocesium. Particularly, we investigated the storm and subsequent floods associated with Typhoon 201326 (Wipha) that passed off the Fukushima coast in October 2013, and subsequently promoted precipitation to a considerable extent and associated riverine freshwater discharge along with sediment outfluxes to the ocean. Using in situ bed sediment core data obtained from regions near the river mouth, we conducted a quantitative assessment of the accumulation and erosion of the sediments and explored the resultant suspended radiocesium distribution around the river mouth and nearshore areas along the Fukushima coast. We identified three major accumulative areas, near the river mouth within an area < 1 km, around the breakwaters in the north of the river mouth, and along the southern coastal area, while offshore and northward transports were minor. The present study clearly exhibits substantial retention of the land-derived radiocesium adsorbed to the sediments in the coastal areas, leading to possible long-term influences on the surrounding marine environment.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Inundações , Japão , Rios , Poluentes Radioativos da Água/análise
5.
Sci Rep ; 11(1): 5664, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707572

RESUMO

A part of the radiocaesium from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was emitted as glassy, water-resistant caesium-bearing microparticles (CsMPs). Here, we isolated and investigated seven CsMPs from marine particulate matter and sediment. From the elemental composition, the 134Cs/137Cs activity ratio, and the 137Cs activity per unit volume results, we inferred that the five CsMPs collected from particulate matter were emitted from Unit 2 of the FDNPP, whereas the two CsMPs collected from marine sediment were possibly emitted from Unit 3, as suggested by (i) the presence of calcium and absence of zinc and (ii) the direction of the atmospheric plume during the radionuclide emission event from Unit 3. The presence of CsMPs can cause overestimation of the solid-water distribution coefficient of Cs in marine sediments and particulate matter and a high apparent radiocaesium concentration factor for marine biota. CsMPs emitted from Unit 2, which were collected from the estuary of a river that flowed through a highly contaminated area, may have been deposited on land and then transported by the river. By contrast, CsMPs emitted from Unit 3 were possibly transported eastward by the wind and deposited directly onto the ocean surface.

6.
Mar Pollut Bull ; 161(Pt B): 111769, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091633

RESUMO

Sedimentary cesium-137 concentrations around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were measured from 2011 to 2017 at eight stations. Although high values were observed until 2013, decreasing trends were observed at the surface sediments of seven stations. We isolated 25 radioactive Cs-bearing microparticles (CsMPs; 1.0-5385 Bq per particle). The contribution ratio of CsMPs to each sample ranged from 4.1% to 99.5% (median 58.8%), with the contribution ratio of the CsMPs in the southern part of the FDNPP was low compared to that from the northern part. In the southern part of the FDNPP, small CsMPs that could not be isolated in this study were present in large quantities immediately after the accident, and gradually diffused away and/or were dissolved over time. In contrast, the CsMPs in the northern part of the FDNPP have most likely accumulated over time, as suggested by the silty nature of the sediments there.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos da Água , Césio , Radioisótopos de Césio/análise , Japão , Centrais Nucleares , Poluentes Radioativos da Água/análise
7.
Sci Rep ; 10(1): 11421, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694627

RESUMO

A part of radiocesium emitted during the Fukushima nuclear accident was incorporated in glassy water-resistant microparticles, called Type-A particles, which are spherical with ~ 0.1 to 10 µm diameter and ~ 10-2 to 102 Bq cesium-137 (137Cs) radioactivity; they were emitted from Unit 2 or 3 of the Fukushima Daiichi Nuclear Power Plant. Meanwhile, Type-B particles, having various shapes, 50-400 µm diameter, and 101-104 Bq 137Cs radioactivity, were emitted from Unit 1. The chemical properties of these radioactive particles have been reported in detail, but previous studies investigated only a small number of particles, especially Type-B particles. We tried to understand radioactive particles systematically by analyzing a large number of particles. Micro-X-ray computed tomography combined with X-ray fluorescence analysis revealed the presence of many voids and iron-rich part within Type-B particles. The 137Cs concentration (Bq mm-3) of Type-A particles was ~ 10,000 times higher than that of Type-B particles. Among the Type-B particles, the spherical ones had higher concentration of volatile elements than the non-spherical ones. These differences suggested that Type-A particles were formed through gas condensation, whereas Type-B particles were formed through melt solidification. These findings might contribute to the safe decommissioning of reactors and environmental impact assessment.

8.
J Environ Radioact ; 217: 106206, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217238

RESUMO

This article summarizes and discusses mass balance calculations of the activities of Fukushima-derived 137Cs released to the atmosphere and ocean prior to 2018 as well as the 137Cs inventories on land and in the ocean, biota, and sediment. We propose that the consensus value of the total amount of 137Cs released to the atmosphere was 15-21 PBq; atmospheric deposition of 137Cs on land was 3-6 PBq; atmospheric deposition of 137Cs on the North Pacific was 12-15 PBq; and direct discharge of 137Cs to the ocean was 3-6 PBq. We also evaluated the movement of 137Cs from one domain to another for several years after the accident. We calculated that the amount of 137Cs transported by rivers might be 40 TBq. The annual deposition of 137Cs due to resuspension at Okuma during the period 2014-2018 was 4-10 TBq year-1. The 137Cs discharged to the ocean was 0.73-1.0 TBq year-1 in 2016-2018. The integrated amount of FNPP1-derived 137Cs that entered the Sea of Japan from the Pacific Ocean from 2011 until 2017 was 270 ± 20 TBq, 6.4% of the estimated amount of FNPP1-derived 137Cs in Subtropical Mode Water in the North Pacific. The integrated amount of FNPP1-derived 137Cs that returned to the North Pacific Ocean through the Tsugaru Strait from the Sea of Japan was 110 ± 10 TBq. Decontamination efforts removed 134 TBq of 137Cs from surface soil prior to February 2019, an amount that corresponded to 4% of the137Cs deposited on land in Japan.


Assuntos
Acidente Nuclear de Fukushima , Radioisótopos de Césio , Japão , Oceano Pacífico , Monitoramento de Radiação , Poluentes Radioativos da Água
9.
J Environ Radioact ; 214-215: 106172, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32063290

RESUMO

Radiocesium was released to the North Pacific coastal waters by the accident at the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) of the Tokyo Electric Power Company (TEPCO) in March 2011. Since the radiocesium in the sediment off Fukushima was suggested as a possible source for the transfer of this radionuclide through the benthic food chain, we conducted numerical simulations of 137Cs in sediments off the Fukushima coast by using a model which incorporates dynamic transfer processes between seawater and the labile and refractory fractions in sediment particles. This model reproduced the measured temporal changes of 137Cs concentration in seabed surface sediment off Fukusima coasts, by normalizing the radiocsium transfer between seawater and sediment according to the particle diameter sizes. We found that the 137Cs level in sediment decreased by desorption during the first several months after the accident, followed by a reduction in the labile fraction until the end of 2012. The apparent decrease of the total radiocesium level in surface sediment was estimated to occur at rates of approximately 0.2 y-1 within a 20 km distance from the 1FNPP. The comparison of 137Cs level decreases in the demersal fish and the simulated temporal labile fraction in fine sediment demonstrated that the consideration of radiocesium transfer via sediment is important for determining the 137Cs depuration mechanism in some demersal fish.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Animais , Disponibilidade Biológica , Radioisótopos de Césio , Japão , Poluentes Radioativos da Água
10.
J Environ Radioact ; 214-215: 106173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32063291

RESUMO

A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the Great East Japan Earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean. We used the Regional Ocean Model System (ROMS) to simulate the 137Cs activity in the oceanic area off Fukushima, with the sources of radioactivity being direct release, atmospheric deposition, river discharge, and inflow across the domain boundary. The direct release rate of 137Cs after the accident until the end of 2016 was estimated by comparing simulated results with measured 137Cs activities adjacent to the 1F NPP. River discharge rates of 137Cs were estimated by multiplying simulated river flow rates by the dissolved 137Cs activities, which were estimated by an empirical function. Inflow of 137Cs across the domain boundary was set according to the results of a North Pacific Ocean model. Because the spatiotemporal variability of 137Cs activity was large, the simulated results were compared with the annual averaged observed 137Cs activity distribution. Normalized annual averaged 137Cs activity distributions in the regional ocean were similar for each year from 2013 to 2016. This result suggests that the annual averaged distribution is predictable. Simulated 137Cs activity attributable to direct release was in good agreement with measurement data from the coastal zone adjacent to the 1F NPP. Comparison of the simulated results with measured activity in the offshore area indicated that the simulation slightly underestimated the activity attributable to inflow across the domain boundary. This result suggests that recirculation of subducted 137Cs to the surface layer was underestimated by the North Pacific model. During the study period, the effect of river discharge on oceanic 137Cs activity was small compared to the effect of directly released 137Cs.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioisótopos de Césio , Japão , Centrais Nucleares , Oceano Pacífico , Rios , Poluentes Radioativos da Água
11.
Artigo em Inglês | MEDLINE | ID: mdl-31652941

RESUMO

The March 2011 earthquake and tsunami resulted in significant damage to the Fukushima Daiichi Nuclear Power Plant (FDNPP) and the subsequent release of radionuclides into the ocean. Here, we investigated the spatial distribution of strontium-90 (90Sr) and cesium-134/cesium-137 (134, 137Cs) in surface seawater of the coastal region near the FDNPP. In the coastal region, 90Sr activity was high, from 0.89 to 29.13 mBq L-1, with detectable FDNPP site-derived 134Cs. This indicated that release of 90Sr from the power plant was ongoing even in May 2013, as was that of 134Cs and 137Cs. 90Sr activities measured at open ocean sites corresponded to background derived from atmospheric nuclear weapons testing fallout. The FDNPP site-derived 90Sr/137Cs activity ratios in seawater were much higher than those in the direct discharge event in March 2011, in river input, and in seabed sediment; those ratios showed large variability, ranging from 0.16 to 0.64 despite a short sampling period. This FDNPP site-derived 90Sr/137Cs activity ratio suggests that these radionuclides were mainly derived from stagnant water in the reactor and turbine buildings of the FDNPP, while a different source with a low 90Sr/137Cs ratio could contribute to and produce the temporal variability of the 90Sr/137Cs ratio in coastal water. We estimated the release rate of 90Sr from the power plant as 9.6 ± 6.1 GBq day-1 in May 2013 on the basis of the relationship between 90Sr and 137Cs activity (90Sr/137Cs = 0.66 ± 0.05) and 137Cs release rate.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Centrais Nucleares/estatística & dados numéricos , Monitoramento de Radiação/métodos , Água do Mar/análise , Radioisótopos de Estrôncio/análise , Poluentes Radioativos da Água/análise , Terremotos , Japão
12.
PLoS One ; 14(3): e0212616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865647

RESUMO

As result of the great east Japan earthquake on March 2011 and the damages of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), huge amount of radionuclides, especially 137Cs, were released to the Japanese Pacific coast. By consequence, several marine species have been contaminated by direct uptake of radionuclides from seawater or through feeding on contaminated preys. In the present study we propose a novel radioecological modelling approach aiming to simulate the radionuclides transfer to pelagic marine species by giving to the organism body-size a key role in the model. We applied the model to estimate the 137Cs content in 14 commercially important species of the North-Western Pacific Ocean after the FDNPP accident. Firstly, we validated the model and evaluated its performance using various observed field data, and we demonstrated the importance of using such modelling approach in radioecological studies. Afterwards, we estimated some radioecological metrics, such as the maximum activity concentration, its corresponding time and the ecological half-life, which are important in assessment of the previous, current and future contamination levels of the studied species. Finally, we estimated the time duration required for each species to reach the pre-accident 137Cs activity concentrations. The results showed that the contamination levels in the planktivorous species have generally reached the pre-accident levels since about 5 years after the accident (since 2016). While in the case of the higher trophic level species, although the activity concentrations are much lower than the regulatory limit for radiocesium in seafood in Japan (100 Bq kg-1), these species still require another 6-14 years (2018-2026) to reach the pre-accident levels.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Radioisótopos de Césio , Cadeia Alimentar , Acidente Nuclear de Fukushima , Modelos Biológicos , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Radioisótopos de Césio/metabolismo , Humanos , Japão , Oceano Pacífico , Alimentos Marinhos/análise , Água do Mar/análise , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/metabolismo
13.
J Environ Radioact ; 203: 200-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927563

RESUMO

The cesium depuration mechanisms were studied in Japanese rockfish Sebastes cheni off Fukushima, in which the radiocesium level remains higher than in other teleost. Samples were collected approximately 5 km south from the nuclear power plant during 2014-2016, and the 137Cs concentrations in fish, stomach content and prey species were measured. The stable cesium content in fish was also analyzed and compared with fish age which was determined by annual ring analysis in otoliths. The 137Cs concentrations in the dominant prey species, mysids and brown shrimp, were several Bq kg-w.w.-1; indicating that transfer via the food chain was substantial compared to that from seawater during the study period. The 137Cs concentrations in S. cheni decreased from 2014 to 2016 due to the metabolic excretion and the rate of decrease in its diet. Biokinetic model analyses confirmed the slower turnover of stable cesium in S. cheni, represented as a biological half-life (Tb1/2) of 140-215 d, and was associated with stable Cs levels in food of 5-7 ng g-w.w.-1. The 137Cs levels in S. cheni were also simulated, which showed that the 137Cs depuration in fish exposed to the initial contaminated plume in 2011 resulted from slower metabolic excretion, while the 137Cs levels in fish born after 2012 could be regarded as equilibrated with the environmental levels of 137Cs. Furthermore, the simulation results suggest that 137Cs depuration in S. cheni population was also caused by the alternation of generation, which can be substantial by the addition of new year class population hatched after 2012 that were not contaminated by the initial contaminated plume from the 2011 accident.


Assuntos
Radioisótopos de Césio/análise , Peixes/metabolismo , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Animais , Radioisótopos de Césio/metabolismo , Cadeia Alimentar , Acidente Nuclear de Fukushima , Conteúdo Gastrointestinal , Japão , Centrais Nucleares , Água do Mar , Poluentes Radioativos da Água/metabolismo
14.
Mar Pollut Bull ; 131(Pt A): 341-346, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29886956

RESUMO

Radioactive cesium concentrations in the suspended matter of the coastal waters around the Fukushima Daiichi Nuclear Power Plant (FDNPP) were investigated between January 2014 and August 2015. The concentrations of radioactive cesium in the suspended matter were two orders higher in magnitude than those determined in the sediment. In addition, we discovered highly radioactive Cs particles in the suspended matter using autoradiography. The geometrical average radioactivity of particles was estimated to be 0.6 Bq at maximum and 0.2 Bq on average. The contribution ratio of highly radioactive Cs particles to each sample ranged from 13 to 54%, and was 36% on average. A major part of the radioactive Cs concentration in the suspended matter around the FDNPP was strongly influenced by the highly radioactive particles. The subsequent resuspension of highly radioactive Cs particles has been suggested as a possible reason for the delay in radioactive Cs depuration from benthic biota.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Poluentes Radioativos da Água/análise , Sedimentos Geológicos/análise , Japão , Monitoramento de Radiação
15.
J Environ Radioact ; 189: 93-102, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29626724

RESUMO

We report temporal variations of 137Cs activity concentrations in surface waters of six regions of the western and central North Pacific Ocean during 2011-2017 using a combination of 1264 previously published data and 42 new data. In the western and central North Pacific Ocean at latitudes of 30-42°N and longitudes of 140°E to 160°W, eastward transport of radiocaesium was clearly apparent. 137Cs activity concentrations in surface water decreased rapidly to ∼2-3 Bq m-3 in 2015/2016, still a bit higher than 137Cs activity concentrations before the FNPP1 accident (1.5-2 Bq m-3). 134Cs/137Cs activity ratios decay-corrected to 11 March 2011 were ∼0.5-0.8. To the south of 30°N and between 130°E and 160°W in the western and central Pacific Ocean, 137Cs activity concentrations were around 1-7 Bq m-3 in 2011/2012 but then stabilized at a few Bq m-3 up to 2017.134Cs activity concentrations were detected at levels of 0.1-0.9 Bq m-3, and 134Cs/137Cs activity ratios decay-corrected to 11 March 2011 were ∼0.3-0.5. Temporal variations of model-simulated 137Cs activity concentrations in surface water in the region of interest showed good agreement with observations, except in the southwestern North Pacific Ocean.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Água do Mar/química , Poluentes Radioativos da Água/análise , Japão , Oceano Pacífico , Fatores de Tempo , Movimentos da Água
16.
J Environ Radioact ; 166(Pt 1): 67-73, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27118521

RESUMO

Radiocesium (134Cs and 137Cs) released from the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) accident contaminated the fish inhabiting the port of 1FNPP. Radiocesium concentrations in some fishes, especially rockfish, have still remained at elevated levels, while concentrations in olive flounder have decreased in 2015 to the level which is close to the Japanese regulatory limit for seafood products (0.1 kBq kg-wet-1). In this study a dynamic food chain transfer model was applied to reconstruct radiocesium levels in olive flounder residing around the port area. As a result, the observed 137Cs concentrations in olive flounder collected from the port could be explained by the simulated values in the fish, using the seawater level records at the port entrance. The reconstructed maximum 134+137Cs concentration in olive flounder inhabiting the port area was 72 kB kg-wet-1 in July 2011 and the ecological half-life (EHL) was estimated as being 180 days during the period of 2014-2015. Short term simulation which assumed that the coastal water fish swam into the port during 1 month, demonstrated that the radiocesium level in the olive flounder may become equivalent to the depurated level in the fish which were initially contaminated. This result indicated that the increase of radiocesium levels in wandering fish is unlikely to change total radiocesium concentrations in the olive flounder. In this sense, the radiocesium levels in the olive flounder of the port area can be interpreted as being convergent in 2015, regardless of the differences in their contamination histories. On the other hand, the higher 137Cs concentrations in fat greenling, compared to the olive flounder, can be attributed to a history of exposure to the contaminated seawater and food at the inner area of the port, such as the shallow draft quay and seawall area. As a result of the reconstructed initial higher radiocesium concentration, constrained by exposure history at the inner area of the port, the depurated radiocesium concentration in fat greenling is still likely to be greater than the regulatory level in the port area in 2015.


Assuntos
Peixes/metabolismo , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água/metabolismo , Animais , Cadeia Alimentar , Água do Mar , Poluentes Radioativos da Água/análise
17.
J Environ Radioact ; 151 Pt 2: 495-501, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26070950

RESUMO

Radiocesium ((134)Cs and (137)Cs) released into the Fukushima coastal environment was transferred to marine biota inhabiting the Pacific Ocean coastal waters of eastern Japan. Though the levels in most of the edible marine species decreased overtime, radiocesium concentrations in some fishes were still remained higher than the Japanese regulatory limit for seafood products. In this study, a dynamic food chain transfer model was applied to reconstruct (137)Cs levels in olive flounder by adopting the radiocesium concentrations in small demersal fish which constitute an important fraction of the diet of the olive flounder particularly inhabiting area near Fukushima. In addition, (137)Cs levels in slime flounder were also simulated using reported radiocesium concentrations in some prey organisms. The simulated results from Onahama on the southern border of the Fukushima coastline, and at Choshi the southernmost point where the contaminated water mass was transported by the Oyashio current, were assessed in order to identify what can be explained from present information, and what remains to be clarified three years after the Fukushima Dai-ichi nuclear power plant (1FNPP) accident. As a result, the observed (137)Cs concentrations in planktivorous fish and their predator fish could be explained by the theoretically-derived simulated levels. On the other hand, the slow (137)Cs depuration in slime flounder can be attributed to uptake from unknown sources for which the uptake fluxes were of a similar magnitude as the excretion fluxes. Since the reported (137)Cs concentrations in benthic invertebrates off Onahama were higher than the simulated values, radiocesium transfer from these benthic detritivorous invertebrates to slime flounder via ingestion was suggested as a cause for the observed slow depuration of (137)Cs in demersal fish off southern Fukushima. Furthermore, the slower depuration in the demersal fish likely required an additional source of (137)Cs, i.e. contaminated detritus or sediment which was entrained with the prey during the active sediment feeding of this fish species.


Assuntos
Organismos Aquáticos/metabolismo , Radioisótopos de Césio/metabolismo , Cadeia Alimentar , Modelos Biológicos , Poluentes Radioativos da Água/metabolismo , Simulação por Computador , Acidente Nuclear de Fukushima , Japão , Oceano Pacífico , Monitoramento de Radiação
18.
J Environ Radioact ; 147: 130-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26065930

RESUMO

Radiocesium ((134)Cs and (137)Cs) originating from the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) has contaminated coastal waters and been subsequently transferred to the marine biota along the Pacific coastal region of eastern Japan. To clarify the mechanism of radiocesium biokinetics in olive flounder, a commercially valuable and piscivorous predator, the biokinetics of (137)Cs was simulated using a dynamic biological compartment model and then validated with the measured concentrations in available monitoring data. The (137)Cs concentrations in seawater of the Pacific coastal sites of eastern Japan, from Kesen-numa (170 km north from the 1FNPP) to Choshi (190 km south from the 1FNPP), were reconstructed by fitting the simulated levels to the observed concentrations. Simulated values were verified by measured radiocesium levels in sedentary organism such as macro-algae and mussels inhabiting each study site which had accumulated radiocesium in their ambient environment from the beginning of the accident. Using reconstructed (137)Cs concentrations in seawater, the (137)Cs levels in olive flounder and its main planktivorous prey fish, e.g. anchovy, sand lance, whitebait, etc., were simulated and compared with observed concentrations to clarify the biokinetics of radiocesium in these organisms. This assessment showed that the determining factor for the maximum radiocesium concentrations in fish in the plankton food chain is likely to be the initial radiocesium concentration which they were exposed to during the contamination stage. Furthermore, the simulated (137)Cs concentrations in gut contents of olive flounder were verified by measured (137)Cs concentrations in the stomach contents of this fish collected within 30 km from the 1FNPP. These results indicated that the decrease of (137)Cs levels in their prey organisms was the primary determining factor of radiocesium depuration, and the resultant ecological half-lives were 140-160 d in the olive flounder, by the simulation.


Assuntos
Bivalves/metabolismo , Radioisótopos de Césio/metabolismo , Peixes/metabolismo , Alga Marinha/metabolismo , Poluentes Radioativos da Água/metabolismo , Animais , Radioisótopos de Césio/análise , Linguados/metabolismo , Cadeia Alimentar , Acidente Nuclear de Fukushima , Conteúdo Gastrointestinal/química , Japão , Cinética , Modelos Teóricos , Monitoramento de Radiação , Água do Mar/análise , Poluentes Radioativos da Água/análise
19.
J Environ Radioact ; 136: 218-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24980438

RESUMO

We used numerical simulations to investigate major controls on spatiotemporal variations of (137)Cs activities in seabed sediments off the Fukushima coast during the first year after the Fukushima Daiichi Nuclear Power Plant accident. The numerical model we used includes (137)Cs transfer between bottom water and sediment by adsorption and desorption, and radioactive decay. The model successfully reproduced major features of the observed spatiotemporal variations of (137)Cs activities in sediments. The spatial pattern of (137)Cs in sediments, which mainly reflected the history of (137)Cs activities in bottom water overlying the sediments and the sediment particle size distribution, became established during the first several months after the accident. The simulated temporal persistence of the (137)Cs activity in the sediments was due to adsorption of (137)Cs onto the sediment mineral fraction having a long desorption timescale of (137)Cs. The simulated total (137)Cs inventory in sediments integrated over the offshore area, where most of the monitoring stations were located, was on the order of 10(13) Bq; this value is consistent with a previous estimate based on observed data. Taking into account (137)Cs activities in sediments in both the coastal area and in the vicinity of the power plant, the simulated total inventory of (137)Cs in sediments off the Fukushima coast increased to a value on the order of 10(14) Bq.


Assuntos
Acidente Nuclear de Fukushima , Sedimentos Geológicos/análise , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análise , Japão , Modelos Teóricos , Oceano Pacífico
20.
J Environ Radioact ; 124: 1-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23639689

RESUMO

The Fukushima Dai-ichi Nuclear Power Plant (1F NPP) accident occurred on 11 March 2011. The accident introduced (137)Cs into the coastal waters which was subsequently transferred to the local coastal biota thereby elevating the concentration of this radionuclide in coastal organisms. In this study, the radioactive cesium levels in coastal biota from the southern Fukushima area were simulated using a dynamic biological compartment model. The simulation derived the possible maximum radioactive cesium levels in organisms, indicating that the maximum (137)Cs concentrations in invertebrates, benthic fish and predator fish occurred during late April, late May and late July, respectively in the studied area where the source was mainly the direct leakage of (137)Cs effluent from the 1F NPP. The delay of a (137)Cs increase in fish was explained by the gradual food chain transfer of (137)Cs introduced to the ecosystem from the initial contamination of the seawater. The model also provided the degree of radionuclide depuration in organisms, and it demonstrated the latest start of the decontamination phase in benthic fish. The ecological half-lives, derived both from model simulation and observation, were 1-4 months in invertebrates, and 2-9 months in plankton feeding fish and coastal predator fish from the studied area. In contrast, it was not possible to similarly calculate these parameters in benthic fish because of an unidentified additional radionuclide source which was deduced from the biological compartment model. To adequately reconstruct the in-situ depuration of radiocesium in benthic fish in the natural ecosystem, a contamination source associated with the bottom sediments is necessary.


Assuntos
Radioisótopos de Césio/metabolismo , Cadeia Alimentar , Acidente Nuclear de Fukushima , Modelos Teóricos , Poluentes Radioativos da Água/metabolismo , Animais , Biota , Radioisótopos de Césio/análise , Peixes/metabolismo , Invertebrados/metabolismo , Japão , Plantas/metabolismo , Monitoramento de Radiação , Água do Mar , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...