Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 971: 176544, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552939

RESUMO

Ovarian clear cell carcinoma (OCCC) is a unique clinicopathological subtype of epithelial ovarian cancer that is resistant to standard chemotherapy. Eribulin, a microtubule dynamics inhibitor of halichondrin class, has unique effects in the cancer microenvironment such as induction of epithelization and reduction in metastatic potential in breast cancer cells; however, nothing is known about the effect of eribulin and the detailed mechanisms in OCCC. This study aimed to investigate the involvement of ferroptosis and its mechanism in the antitumor activity of eribulin in OCCC cells and a mouse xenograft model. We found that eribulin-induced cell death was reduced by ferroptosis inhibitors; deferoxamine, an iron chelator and ferrostatin-1, a lipid peroxidation inhibitor. Eribulin increased the levels of intracellular iron, reactive oxygen species (ROS), and lipid peroxides, and increased the mitochondrial membrane potential. Eribulin downregulated the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), and superoxide dismutase (SOD) activity. The combination of eribulin and ML210, a glutathione peroxidase 4-inhibiting ferroptosis inducer, had a synergistic effect on ferroptosis. Taken together, our findings show firstly that eribulin triggers ferroptosis in OCCC and this effect occurs via the suppression of the Nrf2-HO-1 signaling pathway, SOD activity and the promotion of lipid peroxidation. These findings suggest that eribulin-induced ferroptosis is associated with its anti-tumor effect and also could be a potential therapeutic target in OCCC.


Assuntos
Carcinoma , Ferroptose , Furanos , Cetonas , Policetídeos de Poliéter , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/farmacologia , Microambiente Tumoral
2.
J Endocrinol ; 260(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37965940

RESUMO

Mononuclear cytotrophoblasts (CTs) differentiate and fuse to form multinuclear syncytiotrophoblasts (STs), which produce human chorionic gonadotropin (hCG) and progesterone to maintain pregnancy. Impaired differentiation and fusion of CTs to form STs are associated with hypertensive disorders of pregnancy and fetal growth restriction. Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional single transmembrane heme-binding protein. We previously demonstrated that downregulation of PGRMC1 promotes endometrial stromal cell differentiation (decidualization). Here, we explored the role of PGRMC1 in trophoblast differentiation and fusion. PGRMC1 expression was lower in STs than in CTs of first-trimester placental tissues. PGRMC1 expression in BeWo cells (a trophoblast-derived choriocarcinoma cell line) decreased upon dibutyryl-cAMP (db-cAMP)-induced differentiation. Both inhibition and knockdown of PGRMC1 stimulated hCG production in the presence of db-cAMP. Furthermore, a quantitative cell fusion assay we developed revealed that inhibition and knockdown of PGRMC1 enhanced db-cAMP-stimulated cell fusion. Peroxisome proliferator-activated receptor γ (PPARγ) agonists decreased PGRMC1 expression and stimulated the cell fusion in BeWo cells. These findings suggest that downregulation of PGRMC1 expression in part through activation of PPARγ during trophoblast differentiation promotes hCG production and cell fusion for formation and maintenance of placental villi during pregnancy.


Assuntos
PPAR gama , Placenta , Humanos , Feminino , Gravidez , Regulação para Baixo , PPAR gama/metabolismo , Placenta/metabolismo , Linhagem Celular , Gonadotropina Coriônica/farmacologia , Trofoblastos/fisiologia , Diferenciação Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
3.
J Pharmacol Sci ; 153(4): 188-196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973216

RESUMO

Human endometrial stromal cells (ESCs) undergo differentiation, known as decidualization, and endometrial epithelial cells mature around the embryo implantation stage. In the uterus, cyclooxygenase 2 (COX2), the rate-limiting enzyme that produces prostaglandin E2, is expressed in endometrial stromal and epithelial cells, and promotes decidualization of the former cells. Our recent study demonstrated that progesterone receptor membrane component 1 (PGRMC1) is downregulated during decidualization and may be involved in cellular senescence associated with decidualization via the transcription factor forkhead box protein O1 (FOXO1). Therefore, we investigated the role of PGRMC1 in COX2 expression during differentiation and maturation of endometrial stromal and epithelial cells. Inhibition or knockdown of PGRMC1 significantly enhanced differentiation stimuli-induced COX2 expression in both cell types. However, this COX2 expression was suppressed by FOXO1 knockdown or nuclear factor-kappa B (NF-κB) inhibition. Silencing of COX2 expression inhibited PGRMC1 knockdown-induced expression of decidual markers in ESCs. Thus, PGRMC1 may be linked to FOXO1- and NF-κB-mediated COX2 expression in endometrial cells. Taken together, our data suggest that downregulation of PGRMC1 expression facilitates differentiation of endometrial cells, i.e., decidualization and glandular maturation, via upregulation of COX2 expression.


Assuntos
Decídua , NF-kappa B , Feminino , Humanos , AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Decídua/metabolismo , Endométrio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
4.
Reprod Med Biol ; 22(1): e12537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614815

RESUMO

Purpose: Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods: Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results: Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion: Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.

5.
J Pharmacol Sci ; 150(4): 259-266, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344048

RESUMO

Uterine leiomyosarcoma is an aggressive soft tissue tumor. Stathmin, a phosphoprotein that modulates microtubule dynamics, is highly expressed in many malignancies including leiomyosarcoma. The microtubule-depolymerizing agent eribulin has been recently approved for treating malignant soft tissue tumors. Although eribulin inhibits microtubule polymerization, little is known about the relationship between eribulin treatment and stathmin dynamics. In this study, we explored the role of stathmin expression in the action of eribulin in leiomyosarcoma cells. Eribulin induced phosphorylation of stathmin and reduced expression of subunits A and C of protein phosphatase 2A (PP2A) in a leiomyosarcoma cell line. The PP2A activator FTY720 reduced levels of phosphorylated stathmin. Eribulin decreased stathmin protein levels without affecting stathmin mRNA expression. Furthermore, stathmin knockdown attenuated the inhibitory effects of eribulin on cell viability, whereas stathmin overexpression enhanced the anti-proliferative effect of eribulin. Eribulin-resistant leiomyosarcoma cell lines had enhanced expression of the class Ⅰ ß-tubulin TUBB1, multi-drug resistance 1 protein MDR1 and breast cancer-resistance protein BCRP, and decreased expression of stathmin. Taken together, these results suggest that stathmin expression modulates the pharmacological efficacy of eribulin in uterine leiomyosarcoma cells.


Assuntos
Leiomiossarcoma , Estatmina , Humanos , Estatmina/genética , Estatmina/metabolismo , Estatmina/farmacologia , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patologia
6.
Biomolecules ; 12(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36008941

RESUMO

The appropriate differentiation of endometrial stromal cells (ESCs) into decidual cells is required for embryo implantation and subsequent placentation into humans. Decidualization is accompanied by the appearance of senescent-like cells. We recently reported the secretory phase-specific downregulation of endometrial progesterone receptor membrane component 1 (PGRMC1) and enhanced decidualization upon PGRMC1 knockdown and inhibition in cultured ESCs. However, it remains unknown whether PGRMC1 is involved in cellular senescence during decidualization. Here, we showed that the small interfering RNA (siRNA)-mediated knockdown of PGRMC1 and the inhibition of PGRMC1 by AG-205 increased the expression of the transcription factor forkhead box protein O1 (FOXO1) and the senescence-associated ß-galactosidase activity in cAMP analog- and progesterone-treated ESCs. Furthermore, the knockdown of FOXO1 repressed the decidual senescence induced by siRNA-based PGRMC1 knockdown or AG-205 treatment. Taken together, the decreased PGRMC1 expression in ESCs may accelerate decidualization and cellular senescence via the upregulation of FOXO1 expression for appropriate endometrial remodeling and embryo implantation during the secretory phase.


Assuntos
Decídua , Proteína Forkhead Box O1/genética , Receptores de Progesterona/metabolismo , Células Estromais , Células Cultivadas , Senescência Celular , Decídua/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gravidez , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...